
The OLSR mDNS extension for service discovery
Francesco Saverio Proto, Claudio Pisa,

University of Rome Tor Vergata
{lastname}@ing.uniroma2.it

Abstract—In wireless community networks users can com-
municate with each other directly without accessing the public
Internet. However, the typical use of these networks is to provide
Internet access, with a subset of users sharing their broadband
connectivity acting as gateways. Other services offered inside the
community network are not exploited by the majority of the
users. We believe this happens because essential tools like DNS
and service discovery are hard to deploy in highly distributed
and anarchic networks.
In this work we propose an extension to the OLSR protocol

to support the delivery of mDNS traffic. We present a demo of
our implementation that is devised for the GNU/Linux operating
system. The implementation has been tested both on standard
PCs and on embedded devices running OpenWRT. This proto-
col enhancement makes possible to perform distributed name
resolution and service discovery in community networks, using
standard tools already installed on most users’ computers.

I. INTRODUCTION

OLSR is the most widespread routing protocol in wireless
community networks [1] [2] [3]. These open infrastructures
are ran by volunteers to offer Internet connectivity to neigh-
bourhoods or villages. Even if the users are connected directly
one to each other on high speed wireless networks, few
services other than Internet connectivity are popular among the
members of the communities. To the best of our knowledge 1
community services are not exploited, because wireless com-
munity networks (WCNs) usually lack reliable internal DNS
servers and service directories. WCNs are highly distributed
and unstable, and this makes very hard to deploy centralized
services. A DNS or service directory server could be most of
the time unreachable to the majority of the users due to failures
or network splits. Moreover, the standard DNS protocol [4]
requires a centralized server as source of authority for the
domain, but in the anarchic scenario of communities there is
not a single entity responsible for the network’s deployment,
management and maintenance. In other words, WCNs are
not distributed only in terms of topological position of the
nodes, but also in terms of administrative domains. Setting up
a DNS service for the domain of a WCN presupposes that an
administrative domain covers the whole network, but this is
not necessarily true.
When a central server is not available, name service pro-

tocols installed today on most users’ terminals [5] [6] send
broadcast queries. However, in a network running the OLSR
routing protocol, the broadcast domain is limited to the 1-hop

1This work was developed within the SESAME research project
http://www.sesame-project.net/

neighborhood. This makes it impossible to use a name service
protocol that requires a broadcast medium.
The goal of this work is to provide distributed name

resolution and service discovery in WCNs running the OLSR
protocol. We devise a transport mechanism for mDNS [7]
packets in a OLSR network, to perform name resolution
where it was not possible with limited broadcast-multicast
domain. Moreover, once the network is able to transport
mDNS packets, it is possible to exploit DNS based Service
Discovery to run decentralized applications with other users in
the community network. The solution we present in this paper
is completely distributed, it is backward compatible with the
already deployed nodes in the network and it is transparent to
the end-user. Standard user applications that are off-the-shelf
in recent operating systems, like browsers or chat clients, are
already able to exploit services announced via DNS based
service discovery.

II. MULTICAST DNS AND SERVICE DISCOVERY
Multicast DNS (mDNS) [7] is a protocol that uses APIs

that are similar to the ones of the normal unicast Domain
Name System, but implemented differently. The details of the
mDNS protocols are out of the scope of this paper; in the
following we give a short explanation functional to understand
our work. Each host on the multicast domain stores its own
list of DNS resource records (e.g. A, MX, SRV, etc) and acts
as a DNS server. When an mDNS client wants to resolve a
name, it sends a DNS query in multicast, and the host with the
corresponding A record replies with its IP address. There are
no central hosts responsible for the functioning of the whole
system, and in case of failure or network split, the service still
works between the users connected. Because of the lack of a
central repository, names are assigned on a first-come basis.
If a host discovers that its hostname is already taken from
another host in the network then it chooses a new hostname.
DNS based Service Discovery (DNS-SD) is built on top

of the Domain Name System. It uses DNS SRV, TXT, and
PTR records to advertise Service Instance Names. The hosts
offering the different services publish details of available
services like instance, service type, domain name and optional
configuration parameters. Service types are given informally
on a first-come basis.

III. SCENARIO
Wireless community mesh networks are characterized by

fixed nodes mounted on the roofs of buildings and houses.
OLSR was originally devised for MANETs, with mobile



2

nodes, but in the case of wireless community networks most
of the nodes have fixed positions. These nodes act as OLSR
routers, where one or more radio interfaces are connected
to the mesh backbone and send and receive OLSR protocol
routing packets. The other interfaces, typically wired, are
attached to IP subnets announced into the mesh networks with
HNA (Host and Network Association) messages. The end-
user terminals do not have to run the routing daemon as their
IP addresses are advertised by the nearest OLSR node. It is
common that end-users get their IP address via DHCP by the
nearest OLSR node.

Fig. 1. Sketch of a Wireless Community Network

In figure 1 we can see a sketch of a typical wireless
community deployment, where the node G shares its Internet
connectivity acting as a gateway for all the other nodes. Ob-
viously if the user attached to node A wants to communicate
with the user attached to node B, it is not necessary to pass
through the public Internet. However, if a user is offering a
service on his host (e.g. a Web server) another user willing
to connect to this service must know a priori the IP address
and the port where the service is located. This is not feasible
because i) the IP address may change over time, ii) users
may not know each other a priori and iii) most of them are
not skilled enough to go into the details of IP addresses and
TCP/UDP ports.
To solve the problems listed above, we take advantage of

the fact that most users’ computers will generate mDNS traffic
to announce the active network services. Moreover, hardware
produced in the past few years like network printers and
network attached storage boxes (NAS), generate mDNS traffic
to announce their presence in the network and the available
network services.
The mDNS traffic scope is inside the subnet of the user,

and will not pass beyond the OLSR router. To extend the
multicast domain for mDNS traffic, an OLSR node equipped
with our mDNS plugin can passively capture mDNS packets
and forward them into the mesh network as OLSR signalling
(as we explain in detail in section IV). The captured traffic is

0 31
Packet Length Packet Sequence Number

Message Type Vtime Message Size
Originator Address

Time To Live Hop Count Message Sequence Number

MESSAGE

Message Type Vtime Message Size
Originator Address

Time To Live Hop Count Message Sequence Number

MESSAGE

...

Fig. 2. Basic OLSR Packet Format

then received by the other OLSR nodes that can reproduce it
on their attached subnets.
Network addressing configuration (or autoconfiguration)

for the OLSR nodes and their attached subnets is not in
the goal of this work. We assume that the network has a
consistent addressing, and that all the nodes are configured
correctly. Every host must have a unique IP address and
must be routable: IP unicast connectivity between any pair
of node must be possible. If the network is not fully routable,
unreachable services may be announced, as a route to reach
the host running the service may not exist. Because all the
users must be able to offer services from their hosts, NAT
must be avoided. It is useless to announce a service on a host
behind a NAT: the service will not be available if does not
exist a route to the IP address where the service is announced.

IV. PROTOCOL

The OLSR protocol [8], is a routing protocol designed for
Mobile Ad Hoc Networks (MANETs) and characterized by
the use of the mechanism of MPRs (Multipoint Relays) to
optimize the diffusion of routing information. The protocol is
extensible to provide additional functionality if desired. The
OLSR packet (Figure 2) is a transport container for different
messages.
Two are the fundamental messages of the OLSR protocol:

HELLO, and TC. HELLO messages are used for neighbor
discovery and link sensing; these packets expire after one hop
and are never forwarded. TC messages are used for network
topology information diffusion; these packets are forwarded
away from the originator to deliver topology information
encapsulated into new OLSR packets at each hop.
The protocol can be extended with other message types

to support new OLSR applications. An optimized flooding
mechanism is devised for all the OLSR control traffic. A new
OLSR application can deliver information to all the other
OLSR nodes minimizing the traffic, even if only a subset
of nodes are equipped with the new OLSR application. This
is possible because unknown OLSR messages are processed
according to the default forwarding algorithm. For example an
OLSR node may want to advertise a subnet attached to one
of its interfaces. The node floods an HNA (Host and Network



3

0 31
Message Type Vtime Message Size

Originator Address
Time To Live Hop Count Message Sequence Number

Encapsulated IP Packet + Padding

Fig. 3. mDNS OLSR message

Association) message to all the other nodes. A node capable
of understanding the HNA application will add a route for
the announced network in its routing table, while a node not
aware of the HNA application will forward the HNA messages
according to the default forwarding algorithm.
To extend the OLSR protocol we define the mDNS message

type as in Figure 3.
The key idea is to capture the IP packets containing the

mDNS traffic2 and encapsulate them in the payload of the
mDNS OLSR messages. Because our payload is limited by
the MTU of the wireless interface, we introduced the smallest
possible overhead in the message header. We have 44 bytes
and 76 bytes of total overhead when working respectively in
IPv4 and in IPv6. This means that with a typical MTU of 1500
bytes our protocol can deliver IPv4 packets up to 1456 bytes
and IPv6 packets up to 1424 bytes. However, mDNS packets
are typically smaller and different mDNS OLSR messages may
be aggregated in a single OLSR packet.
The transport protocol is defined as follows: when mDNS

traffic is captured, it is encapsulated into a mDNS OLSR
message and flooded into the network according to the default
forwarding algorithm. The flooding is natively optimized by
OLSR to avoid useless retransmissions. An OLSR mDNS-
aware node receiving a mDNS OLSR message, decapsulates
the IP packet and sends it on its non-OLSR attached interfaces.

V. IMPLEMENTATION
The mDNS OLSR extension is developed as a plugin for

the UniK OLSR Implementation, also known as olsrd [9]. The
source code is distributed under the GPLv3 Licence, and is
freely available in the official olsrd distribution [10].
The natural choice for the mDNS OLSR extension was to

implement it as a plugin, that is loaded upon configuration,
as it is not required for every node to support the mDNS
application3, but only a subset.
To enable the mDNS plugin the following block must be

added to the olsrd configuration file:
LoadPlugin "olsrd_mdns.so.1.0.0"
{
PlParam "NonOlsrIf" "ethX"
}

Where one or more interfaces not participating in the OLSR
network are specified.
The plugin has two main functions that are registered into

the olsrd scheduler. After creating raw socket descriptors

2It is easy to filter mDNS traffic because it is sent over the well known
UDP port 5353
3For example, backbone-only nodes, with no end users directly connected,

may avoid using the plug-in.

to sniff IP packets on the desired interfaces, these socket
descriptors are passed under the control of the OLSR main
scheduler. When a mDNS packet is captured, a mDNS OLSR
message is generated on all the OLSR interfaces of the node.
The plugin also registers itself to the scheduler to receive

incoming mDNS OLSR messages: upon reception the encap-
sulated IP packet is sent over all the non OLSR interfaces
of the node, and the message is processed according to the
default forwarding algorithm.
The implementation is IPv6 ready. The olsrd daemon works

with both IPv4 or IPv6 (but does not support the two protocols
simultaneously). The mDNS plugin is able to work with IPv4
or IPv6 packets depending on the current configuration.

VI. FUTURE WORK

We proved the functionality of our implementation testing
it both in virtual environment with Netkit [11] and in a real
community network [12]. In future work we plan to test the
plugin on other community networks with a higher number of
users.
To reduce bandwidth consumption and for higher scalability,

a future version of the protocol will compress the payload
of the mDNS OLSR messages. This is mainly composed of
ASCII text, therefore even with a lightweight compression it
is possible to significantly reduce its size.

VII. CONCLUSION
In this paper we presented an extension to the OLSR pro-

tocol to deliver mDNS traffic in a wireless mesh network. We
make use of the optimized OLSR flooding mechanism to solve
the problem of the limited broadcast and multicast domain.
This new feature lets users take advantage of DNS based
service discovery tools already installed on their computers.
The protocol has been implemented and disseminated in the
wireless network communities.

REFERENCES
[1] Freifunk: non commercial open initiative to support free radio networks

in the German region - http://start.freifunk.net/
[2] Unimos.net comunidade portuguesa de aficionados da tecnologia wireless

http://unimos.net/
[3] Ninux.org Wireless Community - http://ninux.org/
[4] J. Postel, “Domain Name System Structure and Delegation”, IETF RFC

1591, March 1994
[5] NetBIOS Working Group, “Protocol standard for a NetBIOS service on

a TCP/UDP transport: detailed specifications”, IETF RFC 1002, March
1987

[6] B. Aboba, D. Thaler, and L. Esibov. “Link-local Multicast Name Reso-
lution (LLMNR)”. RFC 4795 (Informational), January 2007.

[7] Cheshire and Krochmal, “Multicast DNS”, http://tools.ietf.org/html/draft-
cheshire-dnsext-multicastdns-07, September 2008

[8] T. Clausen, P. Jacquet, “Optimized Link State Routing Protocol (OLSR)”,
http://tools.ietf.org/html/rfc3626, October 2003

[9] Andreas Tønnesen, “Implementing and extending the Optimized Link
State Routing Protocol”, UniK University Graduate Center - University
of Oslo, 2004

[10] Olsrd Official Web Site http://olsr.org/
[11] Massimo Rimondini, “Emulation of Computer Networks with Netkit”,

Dipartimento di Informatica e Automazione, Roma Tre University,
http://www.netkit.org/ , RT-DIA-113-2007, January 2007

[12] Ninux.org Wireless Community Network testbed
http://tuscolomesh.ninux.org


