
OBAMP
Overlay, Borůvka-based, Ad-hoc

Multicast Protocol

Andrea Detti, Nicola Blefari-Melazzi, Remo Pomposini, Saverio Proto

University of Rome “Tor Vergata”, Electronic Engineering Dept., Italy

{andrea.detti,nicola.blefari} @ uniroma2.it

remo.pomposini@gmail.com

zioproto@gmail.com

http://www.radiolabs.it/obamp

mailto:remo.pomposini@gmail.com
mailto:remo.pomposini@gmail.com
mailto:zioproto@gmail.com
mailto:zioproto@gmail.com
http://www.radiolabs.it/obamp
http://www.radiolabs.it/obamp

2

What is OBAMP ?

 MANET overlay multicast protocol, i.e. peer-to-peer protocol
 user data distributed over a shared distribution tree formed by UDP tunnels

among member nodes
 only member nodes perform the multicast routing
 developed at application layer

 OBAMP shows three distinctive advantages:
 builds an efficient distribution tree
 exploits radio broadcasting
 limits the overall signaling load, network+overlay

 As a consequence, OBAMP has a low-latency and a high delivery ratio,
even when the group size increases

 Feasibility proof through JAVA tested

Why we need OBAMP?

 Multicast Radio streaming over Manet

 Multicast TV streaming over Manet

 Other applications??

3

4

Graph theory background 1/2

 What is the cheapest distribution tree ?
 the minimum spanning tree for the overlay approach
 the Steiner tree for the network layer approach

 The overlay approach can not exploit non-member nodes for
multicast routing; this implies that some network links may
be stressed by more than one transmission of the same
data. For this reason the overlay approach is less efficient
than the network-layer approach (i.e., Steiner tree cheaper
than minimum spanning tree)

 The average ratio between Steiner and minimum spanning tree
cost is limited to 0.9

 This limited efficiency penalty makes attractive the overlay
approach, if the relevant deployment simplification of an
application layer protocol is take into account

5

Graph theory background 2/2

 Borůvka algorithm overview (1926)
 finds the minimum spanning tree over a given graph, such as Kruskal (1956) and

PRIM algorithm (1957)

 it was proposed for electrical networks

 it lends itself more easily to a distributed implementation

 The algorithm
 make a list L of {W} trees, where each tree is composed of a

single vertex

 while L has more than one tree
 for each tree in L, find the smallest edge connecting

the tree to another disjoined tree, thus forming a new
tree

 end

 The graph vertex is the member node; the graph edge is the transport
connection, which cost is the number of underling network hops

 Let us define first-level edges the set of edges of the minimum spanning
tree built by the Borůvka algorithm at the first iteration (in the while loop).
The first-level edges are the edges that connect nearest members

6

Basic operations of OBAMP:
mesh-create

 OBAMP follows a mesh-first approach
 it maintains an overlay network among member nodes

named mesh
 within the mesh, it selects the overlay links that forms

the distribution tree

 The mesh is periodically refreshed through an
expanding-ring search approach, based on HELLO
messages (note: only on AODV mesh -> flooding)

 The mesh links are maintained by member nodes in
a soft-state approach: those not refreshed are
pruned

 Mesh property: the mesh surely contains the
first-level edges of the minimum spanning
tree

7

Basic operations of OBAMP:
tree-create

 Upon the mesh, OBAMP builds an hard-state shared
distribution tree

 hard-state: the release and the setup of a tree links are
regulated by specific two way handshake procedures

 The tree is periodically refreshed by the core member,
which floods the mesh with TREECREATE messages

 During the flooding, each member selects its current
closest upstream member of the tree toward the core,
setups the relevant tree link and, in case, tears down the
tree link toward the old upstream member

 the selection procedure consists in choosing as closest
upstream member, the member that has sent the first
“handled” TREECREATE

 between the reception and the handling, the receiving member
applies an HANDLING_DELAY computed as follows: 0 if the
TREECREATE comes from the nearest member; Δ * “sender hop
distance”, otherwise

 Tree property: the resulting tree at least contains the first-level edges of the minimum
spanning tree. OBAMP tree is an approximation of the minimum spanning tree

8

Basic operations of OBAMP:
data-distribution

 Data distribution is performed through both unicast and broadcast UDP tunnels
 At the reception of a data packet from F, the member C forwards this data toward all

neighbours which distance is greater than one hop and which are connected by a tree
link (i.e., E and G). Each forwarding is carried out by the transmission of an unicast
UDP/IP packet.

 Afterward, the member C forwards the received data toward all neighbours which
distance is equal to one hop (i.e., A, B and D). This latter forwarding is carried out by a
single transmission of a broadcast UDP/IP packet with IP TTL=1

 To limit data duplication each data message contains the list of the members to
which those data have already being sent. (JFMC)

9

Performance evaluation
 NS2

 RANDOM WAY POINT (speed 10m/s, pause 30s)

 95 % confidence interval (10 sims run of 800s)

 Area 1000x1000

 50 nodes

 802.11 @ 2Mbps with 250 m of coverage

 16 kbps total CBR offered traffic
 One-to-all (i.e., single source)
 All-to-all (i.e., multi source)

10

Multi source

11

Single source

12

Implementation

JAVA based

13

Testbed - AODV

 4 nodes
 3 members (1,3,4)
 802.11 adhoc mode
 AODV
 Node movement emulated

through dynamic MAC filtering

Porting to OLSR

 OLSR lacks flooding!
 Ninux.org claimed a OBAMP version

that worked on OLSR -> OBAMPxP
 Node discovery obtained from file

 actually with the recent BMF plugin this
can be fixed!

 Routes gatherered directly from routing
table (cross layer OBAMPxP)

14

Testbed - Ninux.org (OLSR)

15

 The testbed on a real
mesh network!

 It worked!
 Still be we need to

optimize the code
 Some interesting

problems emerged!

Real scenario problems

 Broadcast packets are slow because of
basic rate
 High rate content suffers bandwidth

bottleneck
 Code performace, code needs more

speed
 Only audio streaming is actually possible

16

Source Code GPL

 Mantained now at Ninux.org
 http://test.ninux.org/ (SVN Repository)
 http://wiki.ninux.org (Documentation)

 We need help in porting to Mac OS X
and BSD

 We need help in optimize
 If you think this is a cool project you

are welcome to help!
17

http://test.ninux.org/svn/OBAMPxP/
http://test.ninux.org/svn/OBAMPxP/
http://test.ninux.org/svn/OBAMPxP/
http://test.ninux.org/svn/OBAMPxP/

18

Conclusion

 Thanks for your attention!
 Questions?

 Try it and give us feedback! :)

