Italiano English
Edit History Actions

Diff for "wndw/Capitolo4"

Differences between revisions 1 and 62 (spanning 61 versions)
Revision 1 as of 2006-06-18 13:05:47
Size: 64760
Editor: blaxwan
Comment:
Revision 62 as of 2006-11-24 13:07:09
Size: 70863
Editor: ppp-62-11-1-67
Comment:
Deletions are marked like this. Additions are marked like this.
Line 1: Line 1:
## Please edit system and help pages ONLY in the moinmaster wiki! For more  ## Please edit system and help pages ONLY in the moinmaster wiki! For more
Line 10: Line 10:
= Antennas & Transmission Lines =

The transmitter that generates the RF power to drive the antenna is usually located at some distance from the antenna terminals. The connecting link between the two is the '''''RF transmission line'''''. Its purpose is to carry RF power from one place to another, and to do this as efficiently as possible. From the receiver side, the antenna is responsible for picking up any radio signals in the air and passing them to the receiver with the minimum amount of distortion, so that the radio has its best chance to decode the signal. For these reasons, the RF cable has a very important role in radio systems: it must maintain the integrity of the signals in both directions.

There are two main categories of transmission lines: cables and waveguides. Both types work well for efficiently carrying RF power at 2.4GHz.

== Cables ==

RF cables are, for frequencies higher than HF, almost exclusively coaxial cables (or '''''coax''''' for short, derived from the words "of common axis"). Coax cables have a core '''''conductor''''' wire surrounded by a non-conductive material called '''''dielectric,''''' or simply '''''insulation'''''. The dielectric is then surrounded by an encompassing shielding which is often made of braided wires. The dielectric prevents an electrical connection between the core and the shielding. Finally, the coax is protected by an outer casing which is generally made from a PVC material. The inner conductor carries the RF signal, and the outer shield prevents the RF signal from radiating to the atmosphere, and also prevents outside signals from interfering with the signal carried by the core. Another interesting fact is that the electrical signal always travels along the outer layer of the central conductor: the larger the central conductor, the better signal will flow. This is called the "skin effect".
= Antenne & Linee di Trasmissione =

Il trasmettitore che genera l'alimentazione RF per guidare l'antenna è situato solitamente ad una certa distanza dai terminali dell'antenna. Il link di collegamento fra i due è la '''''linea di trasmissione RF'''''. Il suo scopo è di trasportare l'alimentazione RF da un posto ad un altro e fare ciò il più efficientemente possibile. Dal lato ricevente, l'antenna è responsabile della selezione di ogni segnale radiofonico nell'aria e del loro passaggio alla ricevente con la minima quantità di distorsione, in modo che l'apparato radio abbia la migliore possibilità di decodificare il segnale. Per questi motivi, il cavo RF ha un ruolo molto importante nei sistemi radiofonici: deve effettuare l'integrità dei segnali in entrambi i sensi.

Ci sono due categorie principali di linee della trasmissione: cavi e guide di onde. Entrambi i tipi funzionano bene per trasportare efficientemente l'alimentazione RF a 2.4GHz.

== Cavi ==

I cavi RF sono, per le frequenze più alte dell'HF, quasi esclusivamente cavi coassiali (o più brevemente '''''coax''''', derivato dalle parole "of common axis"). I cavi coassiali hanno un nucleo centrale '''''conduttore''''' circondato da un materiale non conduttivo denominato '''''dielettrico''''' o semplicemente '''''isolamento'''''. Il dielettrico a sua volta è circondato completamente da una protezione che è fatta spesso di fili intrecciati. Il dielettrico impedisce il collegamento elettrico fra il nucleo e la protezione. Per concludere, il coassiale è protetto da una copertura esterna che è fatta generalmente da un materiale PVC. Il conduttore interno trasporta il segnale RF e lo schermo esterno protegge il segnale RF dalle radiazioni dell'atmosfera ed inoltre impedisce ai segnali esterni di interferire con il segnale trasportato dal nucleo. Un altro fatto interessante è che il segnale elettrico viaggia sempre lungo lo strato esterno del conduttore centrale: più grande è il conduttore centrale, meglio sarà il segnale che fluirà. Ciò è denominata "Effetto pelle".
Line 21: Line 21:
||<:>''Figure 4.1: Coaxial cable with jacket, shield, dielectric, and core conductor.''||

Even though the coaxial construction is good at containing the signal on the core wire, there is some resistance to the electrical flow: as the signal travels down the core, it will fade away. This fading is known as '''''attenuation''''', and for transmission lines it is measured in decibels per meter ('''''dB/m'''''). The rate of attenuation is a function of the signal frequency and the physical construction of the cable itself. As the signal frequency increases, so does its attenuation. Obviously, we need to minimize the cable attenuation as much as possible by keeping the cable very short and using high quality cables.

Here are some points to consider when choosing a cable for use with microwave devices:

 1. "The shorter the better!" The first rule when you install a piece of cable is to try to keep it as short as possible. The power loss is not linear, so doubling the cable length means that you are going to lose much more than twice the power. In the same way, reducing the cable length by half gives you more than twice the power at the antenna. The best solution is to place the transmitter as close as possible to the antenna, even when this means placing it on a tower.
 1. "The cheaper the worse!" The second golden rule is that any money you invest in buying a '''good quality''' cable is a bargain. Cheap cables are intended to be used at low frequencies, such as VHF. Microwaves require the highest quality cables available. All other options are nothing but a dummy load.
 1. Always avoid RG-58. It is intended for thin Ethernet networking, CB or VHF radio, not for microwave.
 1. Always avoid RG-213. It is intended for CB and HF radio. In this case the cable diameter does not imply a high quality, or low attenuation.
 1. Whenever possible, use '''''Heliax''''' (also called "Foam") cables for connecting the transmitter to the antenna. When Heliax is unavailable, use the best rated LMR cable you can find. Heliax cables have a solid or tubular center conductor with a corrugated solid outer conductor to enable them to flex. Heliax can be built in two ways, using either air or foam as a dielectric. Air dielectric heliax is the most expensive and guarantees the minimum loss, but it is very difficult to handle. Foam dielectric heliax is slightly more lossy, but is less expensive and easier to install. A special procedure is required when soldering connectors in order to keep the foam dielectric dry and uncorrupted. LMR is a brand of coax cable available in various diameters that works well at microwave frequencies. LMR-400 and LMR-600 are a commonly used alternative to Heliax.
 1. Whenever possible, use cables that are pre-crimped and tested in a proper lab. Installing connectors to cable is a tricky business, and is difficult to do properly even with the proper tools. Unless you have access to equipment that can verify a cable you make yourself (such as a spectrum analyzer and signal generator, or time domain reflectometer), troubleshooting a network that uses homemade cable can be difficult.
 1. Don't abuse your transmission line. Never step over a cable, bend it too much, or try to unplug a connector by pulling directly the cable. All of those behaviors may change the mechanical characteristic of the cable and therefore its impedance, short the inner conductor to the shield, or even break the line. Those problems are difficult to track and recognize and can lead to unpredictable behavior on the radio link.

== Waveguides ==

Above 2 GHz, the wavelength is short enough to allow practical, efficient energy transfer by different means. A waveguide is a conducting tube through which energy is transmitted in the form of electromagnetic waves. The tube acts as a boundary that confines the waves in the enclosed space. The skin effect prevents any electromagnetic effects from being evident outside the guide. The electromagnetic fields are propagated through the waveguide by means of reflections against its inner walls, which are considered perfect conductors. The intensity of the fields is greatest at the center along the X dimension, and must diminish to zero at the end walls because the existence of any field parallel to the walls at the surface would cause an infinite current to flow in a perfect conductor. Waveguides, of course, cannot carry RF in this fashion.

The X, Y and Z dimensions of a rectangular waveguide can be seen in the following figure:
||<:>''Figura 4.1: Cavo coassiale con guaina, schermo, dielettrico e nucleo conduttore.''||

Anche se la costruzione coassiale è buona a mantenere il segnale sul filo del nucleo, c'è una certa resistenza al flusso elettrico: quindi mentre il segnale viaggia attraverso il nucleo, esso diminuirà. Questa diminuzione è conosciuta come '''''attenuazione''''' e per le linee di trasmissione è misurato in decibels al metro ('''''dB/m'''''). Il tasso di attenuazione è funzione della frequenza del segnale e della costruzione fisica del cavo stesso . A mano a mano che la frequenza del segnale aumenta, aumenta anche la relativa attenuazione. Ovviamente, occorre minimizzare l'attenuazione del cavo il più possibile mantenendo il cavo molto corto ed usando cavi di alta qualità.

Qui ci sono alcuni punti da considerare quando si sceglie un cavo da usare con i dispositivi a microonde:

 1. "Più corto è meglio è!" La prima regola quando installate una parte di cavo è di provare a renderlo il più corto possibile. La perdita di potenza non è lineare, così raddoppiare la lunghezza del cavo significa perdere molto più del doppio la potenza. Nello stesso modo, ridurre la lunghezza del cavo della metà significa raddoppiare la potenza all'antenna. La soluzione migliore è disporre il trasmettitore il più vicino possibile all'antenna, anche quando questo significa posizionarlo su una torre.
 1. "Più è economico più è peggiore!" La seconda regola d'oro è che qualunque cifra investiate per acquistare un cavo '''di buona qualità''' è un affare. I cavi economici sono adatti per essere usati alle frequenze basse, come il VHF. Le microonde richiedono cavi della più alta qualità disponibile. Tutte le altre opzioni sono solo fatica sprecata.
 1. Evitare sempre RG-58. E' adatto alle reti thin Ethernet , radiofrequenze CB o VHF, ma non per microonde.
 1. Evitare sempre RG-213. E' adatto alle radiofrequenze CB e HF. In questo caso il diametro del cavo non corrisponde ad un'alta qualità, o ad un basso livello di attenuazione.
 1. Per quanto possibile, usare i cavi '''''Heliax''''' (anche chiamato "foam") per il collegamento del trasmettitore all'antenna. Quando Heliax non è disponibile, usate il miglior cavo LMR che possiate trovare. I cavi Heliax hanno un conduttore centrale solido o tubolare con un conduttore esterno solido ondulato per permettere loro di flettere. Heliax può essere costruito in due modi, usando l'aria o la gomma piuma come dielettrico. L'heliax con aria come dielettrico è più costoso e garantisce la perdita minima, ma è molto difficile da maneggiare. L'heliax con dielettrico in gomma piuma è di qualità minore, ma è meno costoso e di più facile ad installazione. Una procedura speciale è richiesta quando si saldano i connettori per mantenere il dielettrico in gomma piuma asciutto e intatto. LMR è una marca di cavo coassiale disponibile in vari diametri che funziona bene alle frequenze delle microonde. LMR-400 e LMR-600 sono un'alternativa ad Heliax comunemente usata.
 1. Per quanto possibile, usare i cavi che pre-crimped e testati in un laboratorio adeguato. L'installazione dei connettori ai cavi è un problema complesso ed è difficile da fare correttamente anche con gli attrezzi adeguati. A meno che non possiate disporre di un'apparecchiatura che possa verificare un cavo fatto da voi stessi (come un analizzatore di spettro e un generatore di segnale, o un time domain reflectometer), fare un'analisi dei guasti di una rete che usa tale cavo può essere difficile.
 1. Non abusare della vostra linea della trasmissione. Mai calpestare un cavo, piegarlo troppo, o provare a disconnettere un connettore tirando direttamente il cavo. Tutti questi comportamenti possono cambiare la caratteristica meccanica del cavo e quindi la sua impedenza, possono accorciare il conduttore interno allo schermo, o persino interrompere la linea. Questi problemi sono difficili da trovare e riconoscere e possono condurre ad un comportamento imprevedibile del collegamento radiofonico.

== Guide di onde ==

Essendo superiore a 2 gigahertz, la lunghezza d'onda è abbastanza corta da permettere un trasferimento di energia pratico ed efficiente attraverso mezzi differenti. Una guida di onde è un condotto tramite cui l'energia è trasmessa sotto forma di onde elettromagnetiche. Il condotto funge da contorno che limita le onde nello spazio incluso. L'effetto pelle impedisce a tutti gli effetti elettromagnetici di uscire fuori della guida. I campi elettromagnetici sono propagati tramite la guida di onde per mezzo di riflessioni contro le sue pareti interne, che sono considerate conduttori perfetti. L'intensità dei campi è più grande al centro lungo la dimensione X e deve diminuire a zero sulle pareti perché l'esistenza di ogni campo parallelo alle pareti della superficie entrando nel conduttore perfetto causerebbe una corrente infinita. Le guide di onde, naturalmente, non possono trasportare RF in questa situazione.

Le dimensioni X, Y e Z di una guida di onde rettangolare possono essere viste nella seguente figura:
Line 42: Line 42:
||<:>''Figure 4.2: The X, Y, and Z dimensions of a rectangular waveguide.''||

There are an infinite number of ways in which the electric and magnetic fields can arrange themselves in a waveguide for frequencies above the low cutoff frequency. Each of these field configurations is called a '''''mode'''''. The modes may be separated into two general groups. One group, designated '''''TM''''' (Transverse Magnetic), has the magnetic field entirely transverse to the direction of propagation, but has a component of the electric field in the direction of propagation. The other type, designated '''''TE''''' (Transverse Electric) has the electric field entirely transverse, but has a component of magnetic field in the direction of propagation.

The mode of propagation is identified by the group letters followed by two subscript numerals. For example, TE 10, TM 11, etc. The number of possible modes increases with the frequency for a given size of guide, and there is only one possible mode, called the '''''dominant mode''''', for the lowest frequency that can be transmitted. In a rectangular guide, the critical dimension is X. This dimension must be more than 0.5 λ at the lowest frequency to be transmitted. In practice, the Y dimension usually is made about equal to 0.5 X to avoid the possibility of operation in other than the dominant mode. Cross-sectional shapes other than the rectangle can be used, the most important being the circular pipe. Much the same considerations apply as in the rectangular case. Wavelength dimensions for rectangular and circular guides are given in the following table, where X is the width of a rectangular guide and r is the radius of a circular guide. All figures apply to the dominant mode.


||<rowstyle="background-color: #C0C0C0;">Type of guide||Rectangular||Circular||
||Cutoff wavelength||'''2X'''||'''3.41r'''||
||Longest wavelength transmitted with little attenuation||'''1.6X'''||'''3.2r'''||
||Shortest wavelength before next mode becomes possible||'''1.1X'''||'''2.8r'''||

Energy may be introduced into or extracted from a waveguide by means of either an electric or magnetic field. The energy transfer typically happens through a coaxial line. Two possible methods for coupling to a coaxial line are using the inner conductor of the coaxial line, or through a loop. A probe which is simply a short extension of the inner conductor of the coaxial line can be oriented so that it is parallel to the electric lines of force. A loop can be arranged so that it encloses some of the magnetic lines of force. The point at which maximum coupling is obtained depends upon the mode of propagation in the guide or cavity. Coupling is maximum when the coupling device is in the most intense field.

If a waveguide is left open at one end, it will radiate energy (that is, it can be used as an antenna rather than as a transmission line). This radiation can be enhanced by flaring the waveguide to form a pyramidal horn antenna. We will see an example of a practical waveguide antenna for WiFi later in this chapter.

||<rowstyle="background-color: #C0C0C0;">Cable Type||Core||Dielectric||Shield||Jacket||
||<:>''Figura 4.2: Le dimensioni X, Y e Z di una guida di onde rettangolare.''||

C'è un numero infinito di maniere in cui i campi elettrici e magnetici possono organizzarsi in una guida di onde per frequenze sopra la frequenza di taglio basso. Ciascuna di queste configurazioni del campo è denominata '''''modo'''''. I modi possono essere separati in due gruppi generali. Un gruppo, indicato '''''TM''''' (Transverse Magnetic), ha il campo magnetico interamente trasversale al verso della propagazione, ma ha una componente del campo elettrico nel verso della propagazione. L'altro tipo, indicato '''''TE''''' (Transverse Electric) ha il campo elettrico interamente trasversale, ma ha una componente del campo magnetico nel verso della propagazione.

Il modo di propagazione è identificato dalle lettere del gruppo seguite da due numeri. Per esempio, TE 10, TM 11, ecc. Il numero di modi possibili aumenta con la frequenza per un data grandezza della guida e vi è soltanto un possibile modo, denominato il ''''' modo dominante''''', associato alla frequenza più bassa che possa essere trasmessa. In una guida rettangolare, la dimensione critica è X. Questa dimensione deve essere più grande di 0.5 λ alla frequenza più bassa da trasmettere. n pratica, la dimensione di Y solitamente è resa circa uguale a 0.5 X per evitare la possibilità di operare in modi diversi da quelli del modo dominante. Possono essere usate forme a sezione trasversale in alternativa al rettangolo, e la forma più importante è il tubo circolare. Le stesse considerazioni si applicano come nel caso rettangolare. Le dimensioni di lunghezza d'onda per le guide rettangolari e circolari sono date nella seguente tabella, in cui X è la larghezza di una guida rettangolare ed r è il raggio di una guida circolare. Tutte le figure si applicano al modo dominante.


||<rowstyle="background-color: #C0C0C0;">Tipo di guida||Rettangolare||Circolare||
||Taglio della lunghezza d'onda||'''2X'''||'''3.41r'''||
||La più lunga lunghezza d'onda trasmessa con poca attenuazione||'''1.6X'''||'''3.2r'''||
||La più corta lunghezza d'onda prima che il modo seguente divenga possibile||'''1.1X'''||'''2.8r'''||

L'energia può essere introdotta o essere estratta da una guida di onde per mezzo di un campo elettrico o magnetico. Il trasferimento di energia tipicamente accade attraverso una linea coassiale. Due metodi possibili per l'accoppiamento ad una linea coassiale consistono nell'usare il conduttore interno della linea coassiale, o attraverso una spira. Una sonda che è semplicemente una piccola estensione del conduttore interno della linea coassiale può essere orientata in modo che sia parallela alle linee elettriche di forza. Una spira può essere organizzata in modo che includa alcune delle linee magnetiche di forza. Il punto in cui l'accoppiamento massimo è ottenuto dipende dal modo della propagazione nella guida o nella cavità. L'accoppiamento è massimo quando il dispositivo dell'accoppiamento è nel campo più intenso.

Se una guida di onde è lasciata aperta ad un'estremità, irradierà l'energia (cioè può essere usata come antenna piuttosto che come linea della trasmissione). Questa radiazione può essere aumentata svasando la guida di onde per formare un'antenna a tromba piramidale. Vedremo un esempio di una pratica antenna da una guida di onde per WiFi più avanti in questo capitolo.

||<rowstyle="background-color: #C0C0C0;">Tipo di Cavo||Nucleo||Dielettrico||Schermo||Guaina||
Line 64: Line 64:
Here is a table contrasting the sizes of various common transmission lines. Choose the best cable you can afford with the lowest possible attenuation at the frequency you intend to use for your wireless link.

== Connectors and adapters ==

Connectors allow a cable to be connected to another cable or to a component of the RF chain. There are a wide variety of fittings and connectors designed to go with various sizes and types of coaxial lines. We will describe some of the most popular ones.

'''''BNC connectors''''' were developed in the late 40s. BNC stands for Bayonet Neill Concelman, named after the men who invented it: Paul Neill and Carl Concelman. The BNC product line is a miniature quick connect / disconnect connector. It features two bayonet lugs on the female connector, and mating is achieved with only a quarter turn of the coupling nut. BNC's are ideally suited for cable termination for miniature to subminiature coaxial cable (RG-58 to RG-179, RG-316, etc.) They have acceptable performance up to few GHz. They are most commonly found on test equipment and 10base2 coaxial Ethernet cables.

'''''TNC connectors''''' were also invented by Neill and Concelman, and are a threaded variation of the BNC. Due to the better interconnect provided by the threaded connector, TNC connectors work well through about 12GHz. TNC stands for Threaded Neill Concelman.

'''''Type N''''' (again for Neill, although sometimes attributed to "Navy") connectors were originally developed during the Second World War. They are usable up to 18 Ghz, and very commonly used for microwave applications. They are available for almost all types of cable. Both the plug / cable and plug / socket joints are waterproof, providing an effective cable clamp.

'''''SMA''''' is an acronym for SubMiniature version A, and was developed in the 60s. SMA connectors are precision, subminiature units that provide excellent electrical performance up to 18 GHz. These high-performance connectors are compact in size and mechanically have outstanding durability.

The '''''SMB''''' name derives from SubMiniature B, and it is the second subminiature design. The SMB is a smaller version of the SMA with snap-on coupling. It provides broadband capability through 4 GHz with a snap-on connector design.

'''''MCX''''' connectors were introduced in the 80s. While the MCX uses identical inner contact and insulator dimensions as the SMB, the outer diameter of the plug is 30% smaller than the SMB. This series provides designers with options where weight and physical space are limited. MCX provides broadband capability though 6 GHz with a snap-on connector design.

In addition to these standard connectors, most WiFi devices use a variety of proprietary connectors. Often, these are simply standard microwave connectors with the center conductor parts reversed, or the thread cut in the opposite direction. These parts are often integrated into a microwave system using a short jumper called a '''''pigtail''''' that converts the non-standard connector into something more robust and commonly available. Some of these connectors include:

'''''RP-TNC'''''. This is a TNC connector with the genders reversed. These are most commonly found on Linksys equipment, such as the WRT54G.

'''''U.FL''''' (also known as '''''MHF'''''). The U.FL is a patented connector made by Hirose, while the MHF is a mechanically equivalent connector. This is possibly the smallest microwave connector currently in wide use. The U.FL / MHF is typically used to connect a mini-PCI radio card to an antenna or larger connector (such as an N or TNC).

The '''''MMCX''''' series, which is also called a MicroMate, is one of the smallest RF connector line and was developed in the 90s. MMCX is a micro-miniature connector series with a lock-snap mechanism allowing for 360 degrees rotation enabling flexibility. MMCX connectors are commonly found on PCMCIA radio cards, such as those manufactured by Senao and Cisco.

'''''MC-Card''''' connectors are even smaller and more fragile than MMCX. They have a split outer connector that breaks easily after just a few interconnects. These are commonly found on Lucent / Orinoco / Avaya equipment.

Adapters, which are also called coaxial adapters, are short, two-sided connectors which are used to join two cables or components which cannot be connected directly. Adapters can be used to interconnect devices or cables with different types. For example, an adapter can be used to connect an SMA connector to a BNC. Adapters may also be used to fit together connectors of the same type, but which cannot be directly joined because of their gender. For example a very useful adapter is the one which enables to join two Type N connectors, having socket (female) connectors on both sides.
Questa è una tabella contenente varie grandezze di comuni linee di trasmissione. Scegliete il cavo migliore che possiate permettervi con la più bassa attenuazione possibile alla frequenza che intendete usare per il vostro collegamento wireless.

== Connettori e adattatori ==

I connettori permettono di connettere un cavo ad un altro cavo o a un componente della catena RF. Vi è una grande varietà di adattatori e connettori progettati per i vari formati e tipi di linee coassiali. Ne descriveremo alcuni più dei popolari.

I '''''connettori BNC''''' furono progettati verso la fine degli anni 40. BNC significa Bayonet Neill Concelman dal nome degli uomini che lo inventarono:Paul Neill and Carl Concelman. La serie di prodotti BNC comprende un connettore miniaturizzato di connessione/sconnessione veloce. E' caratterizzato da due alette a baionetta sul connettore femmina, e si blocca con soltanto un quarto di giro del dado di aggancio. I BNC sono idealmente adatti per terminazioni di cavi miniature e subminiature di cavi coassiali (da RG-58 a RG-179, RG-316, ecc.). Hanno prestazioni accettabili fino a pochi gigahertz. Sono trovati più comunemente sulle attrezzature di prova e sui cavi coassiali Ethernet 10base2.

Anche i '''''connettori TNC''''' sono stati inventati da Neill e da Concelman ed sono una variazione filettata del BNC. A causa della migliore interconnessione fornita dal connettore filettato, i connettori TNC funzionano bene con circa 12GHz. I TNC significa Threaded Neill Concelman.

Il '''''tipo N''''' (ancora di Neill, anche se a volte attribuito a "Navy") originalmente è stato sviluppato durante la seconda guerra mondiale. Arrivano fino a 18 gigahertz e sono comunemente molto usati per applicazioni con microonde. Sono disponibili per quasi tutti i tipi di cavi. Sia i giunti della spina/cavo che della spina/presa sono impermeabili, fornendo una morsa per filo elettrico efficace.

'''''SMA''''' è un acronimo per SubMiniature versione A ed è stato sviluppato negli anni 60. I connettori SMA hanno precisione, unità di miniatura che forniscono prestazioni elettriche eccellenti fino a 18 gigahertz. Questi connettori ad alto rendimento sono compatti nel formato e meccanicamente hanno durata eccezionale.

'''''SMB''''' deriva da SubMiniature B ed è il secondo disegno di subminiature. SMB è una versione più piccola dello SMA con l'aggancio a scatto. Fornisce la possibilità a banda larga attraverso 4 gigahertz con un connettore progettato a scatto.

I connettori '''''MCX''''' sono stati introdotti negli anni 80. Sebbene MCX abbia contatti ed isolanti di dimensioni interne identiche dell'SMB, il diametro esterno della spina è il 30% più piccolo dell'SMB. Questa serie fornisce ai progettisti opzioni con peso e spazio fisico limitati. MCX fornisce la possibilità a banda larga sebbene solo a 6 gigahertz con un connettore progettato a scatto.

Oltre che questi connettori standard, la maggior parte dei dispositivi WiFi usano una varietà di connettori proprietari. Spesso, questi sono semplicemente connettori standard a microonde con le parti centrali invertite, o con la filettatura tagliata in senso opposto. Queste parti sono integrate spesso in un sistema a microonda usando un ponticello corto denominato '''''ponticello flessibile''''' che converte il connettore non standard in qualcosa di più robusto e facilmente disponibile. Alcuni di questi connettori includono:

'''''RP-TNC'''''. Questo è un connettore TNC con i teminali maschio/femmina invertiti. Questi sono comunemente usati sull'apparecchiatura Linksys, come il WRT54G.

'''''U.FL''''' (anche conosciuto come '''''MHF'''''). L'U.FL è un connettore brevettato fatto da Hirose, mentre il l'MHF è un connettore meccanicamente equivalente. Questo è attualmente il più piccolo connettore a microonde maggiormente usato. U.FL/MHF è usato tipicamente per collegare una scheda radiofonica mini-PCI ad un'antenna o ad un connettore più grande (come N o TNC).

La serie '''''MMCX''''', anche chiamata MicroMate, è una tra le più piccole linee di connettori RF ed è stata sviluppata negli anni 90. MMCX è una serie di connettori micro-miniaturizzata con un meccanismo di sicurezza a scatto permettendo la flessibilità di una rotazione di 360 gradi. I connettori MMCX sono comunemente usati sulle schede radiofoniche di PCMCIA, come quelli prodotte da Senao e da Cisco.

I connettori '''''MC-Card''''' sono ancora più piccoli e più fragili degli MMCX. Hanno un connettore esterno spaccato che si rompe facilmente dopo appena alcuni collegamenti. Questi sono comunemente usati sull'apparecchiatura di Lucent/Orinoco/Avaya.

Gli adattatori, che sono anche denominati adattatori coassiali, sono connettori corti, a due vie utilizzati per unire due cavi o componenti che non possono essere collegati direttamente. Gli adattatori possono essere utilizzati per collegare dispositivi o cavi di differenti tipi. Per esempio, un adattatore può essere utilizzato per collegare un connettore SMA ad uno BNC. Gli adattatori possono anche essere utilizzati per collegare connettori dello stesso tipo, ma che non possono essere uniti direttamente a causa del loro delle differenti terminazioni maschio/femmina. Per esempio un adattatore molto utile è quello che permette di unire due tipi di connettori N, con terminazione femminile da entrambi i lati.
Line 95: Line 95:
||<:>''Figure 4.3: An N female barrel adapter.''||

=== Choosing the proper connector ===

 1. "The gender question." Virtually all connectors have a well defined gender consisting of either a pin (the "male" end) or a socket (the "female" end). Usually cables have male connectors on both ends, while RF devices (i.e. transmitters and antennas) have female connectors. Devices such as directional couplers and line-through measuring devices may have both male and female connectors. Be sure that every male connector in your system mates with a female connector.
 1. "Less is best!" Try to minimize the number of connectors and adapters in the RF chain. Each connector introduces some additional loss (up to a few dB for each connection, depending on the connector!)
 1. "Buy, don't build!" As mentioned earlier, buy cables that are already terminated with the connectors you need whenever possible. Soldering connectors is not an easy task, and to do this job properly is almost impossible for small connectors as U.FL and MMCX. Even terminating "Foam" cables is not an easy task.
 1. Don't use BNC for 2.4GHz or higher. Use N type connectors (or SMA, SMB, TNC, etc.)
 1. Microwave connectors are precision-made parts, and can be easily damaged by mistreatment. As a general rule, you should rotate the outer sleeve to tighten the connector, leaving the rest of the connector (and cable) stationary. If other parts of the connector are twisted while tightening or loosening, damage can easily occur.
 1. Never step over connectors, or drop connectors on the floor when disconnecting cables (this happens more often than what you may imagine, especially when working on a mast over a roof).
 1. Never use tools like pliers to tighten connectors. Always use your hands. When working outside, remember that metals expand at high temperatures and reduce their size at low temperatures: a very tightened connector in the summer can bind or even break in winter.

== Antennas & radiation patterns ==

Antennas are a very important component of communication systems. By definition, an antenna is a device used to transform an RF signal traveling on a conductor into an electromagnetic wave in free space. Antennas demonstrate a property known as '''''reciprocity''''', which means that an antenna will maintain the same characteristics regardless if whether it is transmitting or receiving. Most antennas are resonant devices, which operate efficiently over a relatively narrow frequency band. An antenna must be tuned to the same frequency band of the radio system to which it is connected, otherwise the reception and the transmission will be impaired. When a signal is fed into an antenna, the antenna will emit radiation distributed in space in a certain way. A graphical representation of the relative distribution of the radiated power in space is called a '''''radiation pattern'''''.

=== Antenna term glossary ===

Before we talk about specific antennas, there are a few common terms that must be defined and explained:

==== Input Impedance ====

For an efficient transfer of energy, the '''''impedance''''' of the radio, antenna, and transmission cable connecting them must be the same. Transceivers and their transmission lines are typically designed for 50Ω impedance. If the antenna has an impedance different than 50Ω, then there is a mismatch and an impedance matching circuit is required. When any of these components are mismatched, transmission efficiency suffers.

==== Return loss ====

'''''Return loss''''' is another way of expressing mismatch. It is a logarithmic ratio measured in dB that compares the power reflected by the antenna to the power that is fed into the antenna from the transmission line. The relationship between SWR and return loss is the following:
||<:>''Figura 4.3: Un adattatore avvolgifilo femminile di tipo N.''||

=== Scelta del connettore adeguato ===

 1. "La questione del genere." Virtualmente tutti i connettori hanno un genere ben definito consistente di un perno (l'estremità “maschio„) o di uno zoccolo (l'estremità “femminile„). I cavi hanno solitamente connettori maschili su entrambe le estremità, mentre i dispositivi RF (cioè trasmettitori ed antenne) hanno connettori femminili. I dispositivi come gli accoppiatori direzionali e i dispositivi di misurazione line-through possono avere sia connettori maschili che femminili. Occorre essere sicuri che ad ogni connettore maschile nel vostro sistema corrisponda un connettore femminile.
 1. "Minimizzare è la cosa migliore!" Provare a minimizzare il numero di connettori e di adattatori nella catena RF. Ogni connettore introduce una certa perdita supplementare (fino agli alcuni dB per ogni collegamento, secondo il connettore!)
 1. "Comprare, non costruire!" Come accennato precedentemente, voi avete bisogno per quanto possibile di cavi comprati che sono già completi di connettori. La saldatura dei connettori non è un'operazione facile e fare questo lavoro correttamente è quasi impossibile per i piccoli connettori come U.FL e MMCX. Neppure terminare i cavi "Foam" è un'operazione facile.
 1. Non usare BNC per 2.4GHz o più. Usare il tipo di connettori N (o SMA, SMB, TNC, ecc.)
 1. I connettori a microonde hanno parti fatte con alta precisione e possono essere danneggiati facilmente se maltrattati. Come regola generale, dovreste ruotare il manicotto esterno per stringere il connettore, lasciando il resto del connettore (e del cavo) stazionario. Se altre parti del connettore sono torte mentre si stringono o si allentano, si possono verificare facilmente dei danni.
 1. Non calpestare mai i connettori, o abbandonare i connettori sul pavimento quando si staccano i cavi (questo accade più spesso di quello che potete immaginare, particolarmente quando si lavora al supporto di un'antenna sopra un tetto).
 1. Non utilizzare mai attrezzi come pinze per stringere i connettori. Utilizzare sempre le vostre mani. Nel funzionare all'esterno, ricordarsi che i metalli si espandono alle temperature elevate e che si riducono alle temperature basse: un connettore molto stretto in estate può saldarsi o persino rompersi in inverno.

== Antenne & diagrammi di radiazione ==

Le antenne sono un componente molto importante nei sistemi di comunicazione. Per definizione, un'antenna è un dispositivo utilizzato per trasformare un segnale RF che viaggia su un conduttore in un' onda elettromagnetica nello spazio libero. Le antenne dimostrano una proprietà conosciuta come '''''reciprocità''''', che significa che un'antenna manterrà le stesse caratteristiche sia se si stia trasmettendo che ricevendo. La maggior parte delle antenne sono dispositivi risonanti, e funzionano efficientemente sopra una fascia di frequenza relativamente stretta. Un'antenna deve essere sintonizzata alla stessa fascia di frequenza del sistema radiofonico a cui è collegata, altrimenti la ricezione e la trasmissione saranno alterate. Quando un segnale si inserisce in un'antenna, l'antenna emette una radiazione distribuita nello spazio in una determinata direzione. Una rappresentazione grafica della relativa distribuzione della potenza irradiata nello spazio è denominata '''''diagramma di radiazione'''''.

=== Glossario dei termini dell'antenna ===

Prima di parlare di specifiche antenne, ci sono alcuni comuni termini che devono essere definiti e spiegati:

==== Impedenza dell'input ====

Per un trasferimento efficiente di energia, l' '''''impedenza''''' della radio, dell'antenna ed del cavo della trasmissione che li collega deve essere la stessa. I ricetrasmettitori e le loro linee di trasmissione sono progettati tipicamente per l'impedenza di 50Ω. Se l'antenna ha un'impedenza differente da 50Ω, allora vi è un disadattamento ed è richiesto un circuito di adattamento di impedenza. Quando qualcuno di questi componenti sono sottoposti a disadattamento, l'efficienza della trasmissione diminuisce.

==== Attenuazione di adattamento ====

'''''Attenuazione di adattamento''''' è un altro modo di esprimere il disadattamento. È un rapporto logaritmico misurato in dB che confronta la potenza riflessa dall'antenna con quella che è inserita nell'antenna dalla linea della trasmissione. La relazione fra SWR e attenuazione di adattamento è la seguente:
Line 124: Line 124:
                                 SWR
Return Loss (in dB) = 20log10 -------
                               SWR - 1
                 SWR
Attenuazione di adattamento (in dB) = 20log10 -------
                                               SWR - 1
Line 129: Line 129:
While some energy will always be reflected back into the system, a high return loss will yield unacceptable antenna performance.

==== Bandwidth ====

The '''''bandwidth''''' of an antenna refers to the range of frequencies over which the antenna can operate correctly. The antenna's bandwidth is the number of Hz for which the antenna will exhibit an SWR less than 2:1.

The bandwidth can also be described in terms of percentage of the center frequency of the band.
Mentre una certa quantità di energia sarà sempre riflessa indietro nel sistema, un'alta attenuazione di adattamento renderà inaccettabili le prestazioni dell'antenna.

==== Larghezza di banda ====

La '''''larghezza di banda''''' di un'antenna si riferisce all'intervallo di frequenze sopra le quali l'antenna può funzionare correttamente. La larghezza di banda dell'antenna è il numero di hertz per cui l'antenna esibirà uno SWR minore di 2:1.

La larghezza di banda può anche essere descritta in termini di percentuale della frequenza centrale della banda.
Line 138: Line 138:
                   FH = FL
Bandwidth = 100 x -------
                     FC
          FH = FL
Larghezza di banda = 100 x -------
                              FC
Line 143: Line 143:
...where FH is the highest frequency in the band, FL is the lowest frequency in the band, and FC is the center frequency in the band.

In this way, bandwidth is constant relative to frequency. If bandwidth was expressed in absolute units of frequency, it would be different depending upon the center frequency. Different types of antennas have different bandwidth limitations.

==== Directivity and Gain ====

'''''Directivity''''' is the ability of an antenna to focus energy in a particular direction when transmitting, or to receive energy from a particular direction when receiving. If a wireless link uses fixed locations for both ends, it is possible to use antenna directivity to concentrate the radiation beam in the wanted direction. In a mobile application where the transceiver is not fixed, it may be impossible to predict where the transceiver will be, and so the antenna should ideally radiate as well as possible in all directions. An omnidirectional antenna is used in these applications.

'''''Gain''''' is not a quantity which can be defined in terms of a physical quantity such as the Watt or the Ohm, but it is a dimensionless ratio. Gain is given in reference to a standard antenna. The two most common reference antennas are the '''''isotropic antenna''''' and the '''''resonant half-wave dipole antenna'''''. The isotropic antenna radiates equally well in all directions. Real isotropic antennas do not exist, but they provide useful and simple theoretical antenna patterns with which to compare real antennas. Any real antenna will radiate more energy in some directions than in others. Since antennas cannot create energy, the total power radiated is the same as an isotropic antenna. Any additional energy radiated in the directions it favors is offset by equally less energy radiated in all other directions.

The gain of an antenna in a given direction is the amount of energy radiated in that direction compared to the energy an isotropic antenna would radiate in the same direction when driven with the same input power. Usually we are only interested in the maximum gain, which is the gain in the direction in which the antenna is radiating most of the power. An antenna gain of 3dB compared to an isotropic antenna would be written as '''3dBi'''. The resonant half-wave dipole can be a useful standard for comparing to other antennas at one frequency or over a very narrow band of frequencies. To compare the dipole to an antenna over a range of frequencies requires a number of dipoles of different lengths. An antenna gain of 3dB compared to a dipole antenna would be written as '''3dBd'''.

The method of measuring gain by comparing the antenna under test against a known standard antenna, which has a calibrated gain, is technically known as a '''''gain transfer''''' technique. Another method for measuring gain is the 3 antennas method, where the transmitted and received power at the antenna terminals is measured between three arbitrary antennas at a known fixed distance.

==== Radiation Pattern ====

The '''''radiation pattern''''' or '''''antenna pattern''''' describes the relative strength of the radiated field in various directions from the antenna, at a constant distance. The radiation pattern is a reception pattern as well, since it also describes the receiving properties of the antenna. The radiation pattern is three-dimensional, but usually the measured radiation patterns are a two-dimensional slice of the three-dimensional pattern, in the horizontal or vertical planes. These pattern measurements are presented in either a '''''rectangular''''' or a '''''polar''''' format. The following figure shows a rectangular plot presentation of a typical ten-element Yagi. The detail is goodbut it is difficult to visualize the antenna behavior in different directions.
…dove FH è la più alta frequenza della banda, FL è la frequenza più bassa della banda e FC è la frequenza centrale nella banda.

In questo modo, la larghezza di banda è costante relativamente alla frequenza. Se la larghezza di banda fosse espressa in unità assolute di frequenza, essa sarebbe differente a secondo della frequenza centrale. Differenti tipi di antenne hanno differenti limitazioni di larghezza di banda.

==== Direttività e guadagno ====

La '''''direttività''''' è la capacità di un'antenna di focalizzare l'energia in una particolare direzione quando trasmette, o di ricevere l'energia proveniente da una direzione particolare. Se un collegamento wireless usa posizioni fisse in entrambi i finali, è possibile usare la direttività dell'antenna per concentrare il fascio di radiazione nella direzione desiderata. In un'applicazione mobile dove il ricetrasmettitore non è fisso, può essere impossibile da prevedere dove il ricetrasmettitore sarà e così l'antenna dovrebbe irradiarsi idealmente nel miglior modo possibile in tutte le direzioni. Un'antenna omnidirezionale è utilizzata in queste applicazioni.

Il '''''guadagno''''' non è una quantità che possa essere definita in termini di quantità fisica come il watt o l'Ohm, ma è un rapporto senza dimensioni. Il guadagno è dato nel riferimento ad un'antenna standard. Le due antenne di riferimento più comuni sono l' '''''antenna isotropica''''' e l' '''''antenna risonante a dipolo'''''. L'antenna isotropica si irradia ugualmente bene in tutte le direzioni. Antenne isotropiche reali non esistono, ma forniscono modelli teorici utili e semplici con cui confrontare antenne reali. Ogni antenna reale irradierà più energia in alcune direzioni che in altre. Poiché le antenne non possono generare energia, la potenza totale irradiata è la stessa di un'antenna isotropica. Qualsiasi energia supplementare irradiata nella direzione favorita è compensata da uguale meno energia irradiata in tutte le altre direzioni.

Il guadagno di un'antenna in una data direzione è la quantità di energia irradiata in quella direzione confrontata con l'energia che un'antenna isotropica irradierebbe nella stessa direzione una volta portata alla stessa potenza di input. Siamo solitamente soltanto interessati al guadagno massimo, che è il guadagno nella direzione in cui l'antenna sta irradiando la maggior parte della potenza. Un guadagno dell'antenna di 3dB confrontato con un'antenna isotropica sarebbe scritto come '''3dBi''' . L'antenna risonante a dipolo può essere un utile standard per il confronto con altre antenne ad una frequenza o sopra una banda molto stretta di frequenze. Confrontare il dipolo con un'antenna sopra un intervallo di frequenze richiede un certo numero di dipoli di lunghezze differenti. Un guadagno dell'antenna di 3dB confrontato con un'antenna a dipolo sarebbe scritto come '''3dBd'''.

Il metodo di misurazione del guadagno confrontando l'antenna sotto test con un'antenna standard conosciuta, che ha un guadagno calibrato, è conosciuto tecnicamente come tecnica del '''''trasferimento di guadagno'''''. Un altro metodo per la misurazione del guadagno è il metodo delle 3 antenne, dove la potenza trasmessa e ricevuta ai terminali dell'antenna è misurata fra tre antenne arbitrarie ad una distanza fissa conosciuta.

==== Diagramma di radiazione ====

Il '''''diagramma di radiazione''''' o '''''diagramma dell'antenna''''' descrive la intensità relativa del campo irradiato nelle varie direzioni dall'antenna, ad una distanza costante. Il diagramma di radiazione è anche un diagramma di ricezione, poiché descrive inoltre le proprietà di ricezione dell'antenna. Il diagramma di radiazione è tridimensionale, ma solitamente i diagramma di radiazione misurati sono una fetta bidimensionale del diagramma tridimensionale, nei piani orizzontali o verticali. Queste misure del diagramma sono presentate in un formato '''''rettangolare''''' o '''''polare'''''. La seguente figura mostra una rappresentazione rettangolare del grafico di una tipica antenna Yagi a dieci elementi . Il dettaglio non è affidabile perché è difficile prevedere il comportamento dell'antenna nelle differenti direzioni.
Line 162: Line 162:
||<:>''Figure 4.4: A rectangular plot of a yagi radiation pattern.''||

Polar coordinate systems are used almost universally. In the polar-coordinate graph, points are located by projection along a rotating axis (radius) to an intersection with one of several concentric circles. The following is a polar plot of the same 10 element Yagi antenna.

Polar coordinate systems may be divided generally in two classes: '''''linear''''' and '''''logarithmic'''''. In the linear coordinate system, the concentric circles are equally spaced, and are graduated. Such a grid may be used to prepare a linear plot of the power contained in the signal. For ease of comparison, the equally spaced concentric circles may be replaced with appropriately placed circles representing the decibel response, referenced to 0 dB at the outer edge of the plot. In this kind of plot the minor lobes are suppressed. Lobes with peaks more than 15 dB or so below the main lobe disappear because of their small size. This grid enhances plots in which the antenna has a high directivity and small minor lobes. The voltage of the signal, rather than the power, can also be plotted on a linear coordinate system. In this case, too, the directivity is enhanced and the minor lobes suppressed, but not in the same degree as in the linear power grid.
||<:>''Figura 4.4: Un grafico rettangolare di un diagramma di radiazione di un'antenna yagi.''||

I sistemi a coordinate polari sono usati quasi universalmente. Nel grafico a coordinate polari, i punti sono localizzati tramite proiezione lungo un asse di rotazione (raggio) ad un'intersezione con uno di parecchi cerchi concentrici. Ciò che segue è un diagramma polare della stessa antenna di Yagi a 10 elementi.

I sistemi a coordinate polari possono essere divisi generalmente in due classi: '''''lineare''''' e '''''logaritmico'''''. Nel sistema a coordinate lineari, i cerchi concentrici sono equidistanti e sono graduati. Una tale griglia può essere usata per preparare un grafico lineare della potenza contenuta nel segnale. Per facilità di confronto, i cerchi concentrici equidistanti possono essere sostituiti con cerchi disposti propriamente che rappresentano la risposta in decibel, corrispondente a 0 dB sul bordo esterno del grafico. In questo genere di grafici i lobi minori sono soppressi. I lobi con picchi di più di 15 dB o sotto il lobo principale spariscono a causa del loro piccola dimensione. Questa griglia aumenta i grafici in cui l'antenna ha un alta direttività e piccoli lobi minori. La tensione del segnale, piuttosto che la potenza, può anche essere tracciata su un sistema a coordinate lineare. In questo caso, anche, la direttività è aumentata ed i lobi minori sono soppressi, ma non nello stessa quantità come nella griglia di potenza lineare.
Line 169: Line 169:
||<:>''Figure 4.5: A linear polar plot of the same yagi.''||

In the logarithmic polar coordinate system the concentric grid lines are spaced periodically according to the logarithm of the voltage in the signal. Different values may be used for the logarithmic constant of periodicity, and this choice will have an effect on the appearance of the plotted patterns. Generally the 0 dB reference for the outer edge of the chart is used. With this type of grid, lobes that are 30 or 40 dB below the main lobe are still distinguishable. The spacing between points at 0 dB and at -3 dB is greater than the spacing between -20 dB and -23 dB, which is greater than the spacing between -50 dB and -53 dB. The spacing thus correspond to the relative significance of such changes in antenna performance.

A modified logarithmic scale emphasizes the shape of the major beam while compressing very low-level (> 30 dB) sidelobes towards the center of the pattern.
||<:>''Figura 4.5: Un grafico lineare polare della stessa antenna yagi.''||

Nel sistema a coordinate polari logaritmiche le linee di griglia concentriche sono spaziate periodicamente secondo il logaritmo della tensione del segnale. I valori differenti possono essere usati per la costante logaritmica della periodicità e questa scelta avrà un effetto sull'apparenza dei diagrammi tracciati. Generalmente è usato il riferimento di 0 dB per il bordo esterno del gafico. Con questo tipo di griglia, i lobi che sono 30 o 40 dB sotto il lobo principale sono ancora distinguibili. La distanza fra i punti 0 e -3 dB è più grande della distanza fra -20 e -23 dB, che è più grande della distanza fra -50 e -53 dB. La distanza corrisponde così all'importanza relativa di tali cambiamenti nelle prestazioni dell'antenna.

Una scala logaritmica modificata aumenta la forma del fascio principale mentre comprime ad un livello molto basso (> dB 30) i lobi laterali verso il centro del diagramma.
Line 176: Line 176:
||<:>''Figure 4.6: The logarithmic polar plot''||

There are two kinds of radiation pattern: '''''absolute''''' and '''''relative'''''. Absolute radiation patterns are presented in absolute units of field strength or power. Relative radiation patterns are referenced in relative units of field strength or power. Most radiation pattern measurements are relative to the isotropic antenna, and the gain transfer method is then used to establish the absolute gain of the antenna.

The radiation pattern in the region close to the antenna is not the same as the pattern at large distances. The term near-field refers to the field pattern that exists close to the antenna, while the term far-field refers to the field pattern at large distances. The far-field is also called the radiation field, and is what is most commonly of interest. Ordinarily, it is the radiated power that is of interest, and so antenna patterns are usually measured in the far-field region. For pattern measurement it is important to choose a distance sufficiently large to be in the far-field, well out of the near-field. The minimum permissible distance depends on the dimensions of the antenna in relation to the wavelength. The accepted formula for this distance is:
||<:>''Figura 4.6: Il grafico logaritmico polare''||

Ci sono due generi di diagrammi di radiazione: '''''assoluto''''' e '''''relativo'''''. I diagrammi di radiazione assoluti sono presentati in unità assolute d'intensità o di potenza del campo. I diagrammi di radiazione relativi si riferiscono nelle unità relative d'intensità o di potenza del campo. La maggior parte delle misure del diagrammi di radiazione riguardano l'antenna isotropica ed il metodo di trasferimento di guadagno allora è usato per stabilire il guadagno assoluto dell'antenna.

Il diagramma di radiazione nella regione vicino all'antenna non è la stessa del diagramma alle grandi distanze. Il termine near-field si riferisce al diagramma del campo che esiste vicino all'antenna, mentre termine far-field si riferisce al diagramma del campo alle grandi distanze. Il far-field inoltre è denominato radiation field, che è il più comunemente usato. In genere, è la potenza irradiata che più interessa e così i diagrammi dell'antenna sono misurati solitamente nella regione far-field. Per la misura del diagramma è importante scegliere una distanza sufficientemente grande da essere nel far-field, ben fuori dal near-field. La distanza ammissibile minima dipende dalle dimensioni dell'antenna rispetto alla lunghezza d'onda. La formula accettata per questa distanza è:
Line 188: Line 188:
where rmin is the minimum distance from the antenna, d is the largest dimension of the antenna, and λ is the wavelength.

==== Beamwidth ====

An antenna's '''''beamwidth''''' is usually understood to mean the half-power beamwidth. The peak radiation intensity is found, and then the points on either side of the peak which represent half the power of the peak intensity are located. The angular distance between the half power points is defined as the beamwidth. Half the power expressed in decibels is -3dB, so the half power beamwidth is sometimes referred to as the 3dB beamwidth. Both horizontal and vertical beamwidths are usually considered.

Assuming that most of the radiated power is not divided into sidelobes, then the directive gain is inversely proportional to the beamwidth: as the beamwidth decreases, the directive gain increases.

==== Sidelobes ====

No antenna is able to radiate all the energy in one preferred direction. Some is inevitably radiated in other directions. These smaller peaks are referred to as '''''sidelobes''''', commonly specified in dB down from the main lobe.
dove rmin è la distanza minima dall'antenna, la d è la più grande dimensione dell'antenna e il λ è la lunghezza d'onda.

==== Larghezza di fascio ====

Usualmente per '''''larghezza di fascio''''' dell'antenna si intende la larghezza di fascio a metà potenza. Quando il picco dell'intensità di radiazione è conosciuto allora i punti da ciascun lato del picco che rappresenta la metà di potenza dell'intensità sono individuati. La distanza angolare fra i punti di metà potenza è definita come la larghezza di fascio. La metà di potenza espressa in decibel è -3dB, così la larghezza di fascio a metà potenza a volte si riferisce alla larghezza di fascio 3dB. Usualmente sono considerate sia le larghezze del fascio orizzontali che verticali.

Assumendo che la maggior parte di potenza irradiata non è divisa nei lobi laterali, il guadagno di direttività è inversamente proporzionale alla larghezza di fascio: mentre la larghezza di fascio diminuisce, il guadagno di direttività aumenta.

==== Lobi laterali ====

Non c'è nessun'antenna capace di irradiare tutta l'energia in una direzione desiderata. Un po' di energia è irradiata inevitabilmente in altre direzioni. Questi più piccoli picchi sono conosciuti come '''''lobi laterali''''', misurati comunemente in dB più piccoli rispetto al lobo principale.
Line 202: Line 202:
In an antenna radiation pattern, a '''''null''''' is a zone in which the effective radiated power is at a minimum. A null often has a narrow directivity angle compared to that of the main beam. Thus, the null is useful for several purposes, such as suppression of interfering signals in a given direction.

==== Polarization ====

'''''Polarization''''' is defined as the orientation of the electric field of an electromagnetic wave. Polarization is in general described by an ellipse. Two special cases of elliptical polarization are '''''linear polarization''''' and '''''circular polarization'''''. The initial polarization of a radio wave is determined by the antenna.

With linear polarization, the electric field vector stays in the same plane all the time. The electric field may leave the antenna in a vertical orientation, a horizontal orientation, or at some angle between the two. '''''Vertically polarized '''''radiation is somewhat less affected by reflections over the transmission path. Omnidirectional antennas always have vertical polarization. With '''''horizontal polarization''''', such reflections cause variations in received signal strength. Horizontal antennas are less likely to pick up man-made interference, which ordinarily is vertically polarized.
In un diagramma di radiazione dell'antenna, un '''''null''''' è una posizione in cui la potenza del segnale irradiata efficace è ad un minimo. Una posizione di segnale minimo ha spesso un angolo di direttività più di quello del fascio principale. Quindi, la posizione di segnale minimo è utile per parecchi scopi, come la soppressione dei segnali interferenti in una data direzione.

==== Polarizzazione ====

La '''''polarizzazione''''' è definita come l'orientamento del campo elettrico di un'onda elettromagnetica. La polarizzazione generalmente è descritta da un ellisse. Due casi speciali di polarizzazione ellittica sono '''''polarizzazione lineare''''' e '''''polarizzazione circolare'''''. La polarizzazione iniziale di un'onda radio è determinata dall'antenna.

Con la polarizzazione lineare, il vettore del campo elettrico rimane nello stesso piano tutto il tempo. Il campo elettrico può lasciare l'antenna in un orientamento verticale, un orientamento orizzontale, o ad un certo angolo fra i due. La radiazione '''''polarizzata verticalmente''''' è influenzata piuttosto di meno dalle riflessioni sul percorso di trasmissione. Le antenne omnidirezionali hanno sempre una polarizzazione verticale. Con la '''''polarizzazione orizzontale''''', tali riflessioni causano variazioni nell'intensità del segnale ricevuto. E' meno probabile che le antenne orizzontali risentano dell'interferenza industriale, che ordinariamente è polarizzata verticalmente.
Line 211: Line 211:
||<:>''Figure 4.7: The electrical sine wave moves perpendicular to magnetic wave in the direction of propagation.''||

In circular polarization the electric field vector appears to be rotating with circular motion about the direction of propagation, making one full turn for each RF cycle. This rotation may be right-hand or left-hand. Choice of polarization is one of the design choices available to the RF system designer.

==== Polarization Mismatch ====

In order to transfer maximum power between a transmit and a receive antenna, both antennas must have the same spatial orientation, the same polarization sense, and the same axial ratio.

When the antennas are not aligned or do not have the same polarization, there will be a reduction in power transfer between the two antennas. This reduction in power transfer will reduce the overall system efficiency and performance.

When the transmit and receive antennas are both linearly polarized, physical antenna misalignment will result in a polarization mismatch loss, which can be determined using the following formula:
||<:>''Figura 4.7: L'onda sinusoidale elettrica si sposta perpendicolarmente all'onda magnetica nel verso della propagazione.''||

Nella polarizzazione circolare il vettore del campo elettrico ruota con movimento circolare nel verso della propagazione, facendo un giro completo per ogni ciclo RF. Questa rotazione può essere destrorsa o sinistrorsa. La scelta della polarizzazione è una delle scelte di progettazione disponibili al progettista del sistema RF.

==== Disadattamento di polarizzazione ====

Per trasferire la massima potenza del segnale fra un'antenna trasmittente e una ricevente, entrambe le antenne devono avere lo stesso orientamento spaziale, lo stesso verso di polarizzazione e lo stesso rapporto assiale.

Quando le antenne non sono allineate o non hanno la stessa polarizzazione, ci sarà una riduzione del trasferimento di potenza fra le due antenne. Questa riduzione del trasferimento di potenza diminuirà l'efficienza e le prestazioni del sistema totale.

Quando le antenne trasmittente e ricevente sono entrambe polarizzate linearmente, il disallineamento fisico delle antenne provocherà una perdita da disadattamento di polarizzazione, che può essere determinata usando la seguente formula:
Line 226: Line 226:

...where θ is the difference in alignment angle between the two antennas. For 15° the loss is approximately 0.3dB, for 30° we lose 1.25dB, for 45° we lose 3dB and for 90° we have an infinite loss.

In short, the greater the mismatch in polarization between a transmitting and receiving antenna, the greater the apparent loss. In the real world, a 90° mismatch in polarization is quite large but not infinite. Some antennas, such as yagis or can antennas, can be simply rotated 90° to match the polarization of the other end of the link. You can use the polarization effect to your advantage on a point-to-point link. Use a monitoring tool to observe interference from adjacent networks, and rotate one antenna until you see the lowest received signal. Then bring your link online and orient the other end to match polarization. This technique can sometimes be used to build stable links, even in noisy radio environments.

==== Front-to-back ratio ====

It is often useful to compare the '''''front-to-back ratio''''' of directional antennas. This is the ratio of the maximum directivity of an antenna to its directivity in the opposite direction. For example, when the radiation pattern is plotted on a relative dB scale, the front-to-back ratio is the difference in dB between the level of the maximum radiation in the forward direction and the level of radiation at 180 degrees.

This number is meaningless for an omnidirectional antenna, but it gives you an idea of the amount of power directed forward on a very directional antenna.

=== Types of Antennas ===

A classification of antennas can be based on:

 * '''Frequency and size'''. Antennas used for HF are different from antennas used for VHF, which in turn are different from antennas for microwave. The wavelength is different at different frequencies, so the antennas must be different in size to radiate signals at the correct wavelength. We are particularly interested in antennas working in the microwave range, especially in the 2.4 GHz and 5 GHz frequencies. At 2.4 GHz the wavelength is 12.5cm, while at 5 GHz it is 6cm.
 * '''Directivity.''' Antennas can be omnidirectional, sectorial or directive. '''''Omnidirectional antennas''''' radiate roughly the same pattern all around the antenna in a complete 360° pattern. The most popular types of omnidirectional antennas are the '''''dipole''''' and the '''''ground plane'''''. '''''Sectorial antennas''''' radiate primarily in a specific area. The beam can be as wide as 180 degrees, or as narrow as 60 degrees. '''''Directional''''' or '''''directive antennas''''' are antennas in which the beamwidth is much narrower than in sectorial antennas. They have the highest gain and are therefore used for long distance links. Types of directive antennas are the Yagi, the biquad, the horn, the helicoidal, the patch antenna, the parabolic dish, and many others.
 * '''Physical construction.''' Antennas can be constructed in many different ways, ranging from simple wires, to parabolic dishes, to coffee cans.
...dove θ è l'angolo della differenza di allineamento fra le due antenne. Per 15° la perdita è approssimativamente 0.3dB, per 30° si perdono 1.25dB, per 45° si perdono 3dB e per 90° si ha una perdita infinita.

In breve, più grande è il disadattamento nella polarizzazione fra un'antenna trasmittente e di ricezione, più grande è la perdita apparente. Nella realtà, un disadattamento di 90° nella polarizzazione è abbastanza grande ma non infinito. Alcune antenne, come le yagis o le antenne can, possono essere semplicemente ruotate di 90° per uguagliare la polarizzazione dall'altra parte del collegamento. Potete usare l'effetto di polarizzazione a vostro vantaggio su un collegamento punto-a-punto. Utilizzare uno strumento di monitoraggio per osservare l'interferenza tra le reti adiacenti e ruotare un'antenna fino a che non vedete il più basso segnale ricevuto. Allora collegatevi ed orientate l'altra parte in modo da eguagliare la polarizzazione. Questa tecnica può a volte essere usata per mantenere i collegamenti stabili, anche negli ambienti radiofonici rumorosi.

==== Rapporto fronte-retro ====

È spesso utile confrontare il '''''rapporto fronte-retro''''' delle antenne direzionali. Questo è il rapporto del massima direttività di un'antenna rispetto alla direttività nel verso opposto. Per esempio, quando il diagramma di radiazione è rappresentato con una una scala relativa di dB, il rapporto fronte-retro è la differenza in dB fra il livello della massima radiazione nel verso di andata ed il livello di radiazione a 180 gradi.

Questo numero è insignificante per un'antenna omnidirezionale, ma dà un'idea della quantità di potenza diretta in avanti su un'antenna assolutamente direzionale.

=== Tipi di Antenne ===

La classificazione delle antenne può essere basata su:

 * '''Frequenza e grandezza'''. Le antenne utilizzate per l'HF sono differenti dalle antenne utilizzate per il VHF, che a loro volta sono differenti dalle antenne per le microonde. La lunghezza d'onda è diversa a frequenze differenti, di modo che le antenne devono essere differenti nel formato per irradiare i segnali alla lunghezza d'onda corretta. In particolare noi siamo interessati in antenne che funzionano in un intervallo di microonde, specialmente alle frequenze di 2.4 GHz e di 5 GHz. A 2.4 GHz la lunghezza d'onda è 12.5cm, mentre a 5 GHz è 6cm.
 * '''Direttività'''. Le antenne possono essere omnidirezionali, settoriali o direttive. Le '''''antenne omnidirezionali''''' irradiano approssimativamente nello stesso modo interamente intorno all'antenna in un diagramma completo a 360°. I tipi più popolari di antenne omnidirezionali sono il '''''dipolo''''' e il '''''piano di massa'''''. Le '''''antenne settoriali''''' irradiano soprattutto in una zona specifica. Il fascio può essere largo fino a 180 gradi, o stretto fino a 60 gradi. Le '''''direzionali''''' o '''''antenne direttive''''' sono antenne in cui la larghezza di fascio è molto più stretta delle antenne settoriali. Hanno il più alto guadagno e quindi sono usate per i collegamenti interurbani. Tipi di antenne direttive sono la Yagi, la biquad, l'antenna a tromba, l'elicoidale, l'antenna patch, il disco parabolico e molte altre.
 * '''Costruzione fisica'''. Le antenne possono essere costruite in molti differenti modi, che variano dai semplici fili, ai dischi parabolici, ai barattoli di caffè.
Line 249: Line 248:
A brief list of common type of antennas for the 2.4 GHz frequency is presented now, with a short description and basic information about their characteristics.

==== 1/4 wavelength ground plane ====

The 1/4 wavelength ground plane antenna is very simple in its construction and is useful for communications when size, cost and ease of construction are important. This antenna is designed to transmit a vertically polarized signal. It consists of a 1/4 wave element as half-dipole and three or four 1/4 wavelength ground elements bent 30 to 45 degrees down. This set of elements, called radials, is known as a ground plane. This is a simple and effective antenna that can capture a signal equally from all directions. To increase the gain, the signal can be flattened out to take away focus from directly above and below, and providing more focus on the horizon. The vertical beamwidth represents the degree of flatness in the focus. This is useful in a Point-to-Multipoint situation, if all the other antennas are also at the same height. The gain of this antenna is in the order of 2 - 4 dBi.
Ora sarà presentata una breve lista di antenne di tipo comune per la frequenza dei 2.4 GHz, con una breve descrizione e con le informazioni di base sulle loro caratteristiche.

==== Piano di massa con lunghezza d'onda di 1/4 ====

L'antenna a piano di massa con lunghezza d'onda di 1/4 è molto semplice da costruire ed è utile per le comunicazioni quando formato, costo e facilità di costruzione sono importanti. Questa antenna è progettata per trasmettere un segnale polarizzato verticalmente. Consiste di un elemento a dipolo a 1/4 d'onda e tre o quattro elementi a piano di massa con lunghezza d'onda di 1/4 piegati di 30 - 45 gradi in giù. Questo insieme degli elementi, denominati parti radiali, è conosciuto come piano di massa. Questa è un'antenna semplice ed efficace che può catturare ugualmente un segnale da tutti le direzioni. Per aumentare il guadagno, il segnale può essere appiattito concentrando il fuoco maggiormente all'orizzonte piuttosto che sopra o sotto di esso. La larghezza di fascio verticale rappresenta il grado di planarità del fuoco. Ciò è utile in una situazione Punto-Multipunto, se tutte le altre antenne sono anche alla stessa altezza. Il guadagno di questa antenna è dell'ordine di 2 – 4 dBi.
Line 256: Line 255:
||<:>''Figure 4.8: Quarter wavelength ground plane antenna.''||

==== Yagi antenna ====

A basic Yagi consists of a certain number of straight elements, each measuring approximately half wavelength. The driven or active element of a Yagi is the equivalent of a center-fed, half-wave dipole antenna. Parallel to the driven element, and approximately 0.2 to 0.5 wavelength on either side of it, are straight rods or wires called reflectors and directors, or simply passive elements. A reflector is placed behind the driven element and is slightly longer than half wavelength; a director is placed in front of the driven element and is slightly shorter than half wavelength. A typical Yagi has one reflector and one or more directors. The antenna propagates electromagnetic field energy in the direction running from the driven element toward the directors, and is most sensitive to incoming electromagnetic field energy in this same direction. The more directors a Yagi has, the greater the gain. As more directors are added to a Yagi, it therefore becomes longer. Following is the photo of a Yagi antenna with 6 directors and one reflector.
||<:>''Figura 4.8: Antenna a piano di massa con lunghezza d'onda di 1/4.''||

==== Antenna Yagi ====

Una Yagi base consiste di un certo numbero di elementi diritti, della misura approssimativamente di mezza lunghezza d'onda. L'elemento portante o attivo di una Yagi è equivalente ad un center-fed, un'antenna a dipolo a semi onda. Parallelamente all'elemento portante e circa di 0.2 - 0.5 lunghezze d'onda da qualsiasi lato di esso, vi sono delle barre o fili diritti denominati riflettori e direttori, o semplicemente elementi passivi. Un riflettore è disposto dietro l'elemento portante ed è un po' più lungo della metà della lunghezza d'onda; un direttore è disposto davanti l'elemento guidato ed è un po' più corto della metà della lunghezza d'onda. Una Yagi tipica ha un riflettore ed uno o più direttori. L'antenna propaga l'energia del campo elettromagnetico nella direzione che parte dall'elemento portante e si dirige verso i direttori ed è più sensibile all'energia entrante del campo elettromagnetico nella stessa direzione. Più direttori ha un Yagi, più grande è il guadagno. Più direttori sono aggiunti ad una Yagi essa, più essa diventa lunga. Segue la foto di un'antenna Yagi con 6 direttori ed un riflettore.
Line 263: Line 262:
||<:>''Figure 4.9: A Yagi antenna.''||

Yagi antennas are used primarily for Point-to-Point links, have a gain from 10 to 20 dBi and a horizontal beamwidth of 10 to 20 degrees.

==== Horn ====

The horn antenna derives its name from the characteristic flared appearance. The flared portion can be square, rectangular, cylindrical or conical. The direction of maximum radiation corresponds with the axis of the horn. It is easily fed with a waveguide, but can be fed with a coaxial cable and a proper transition. Horn antennas are commonly used as the active element in a dish antenna. The horn is pointed toward the center of the dish reflector. The use of a horn, rather than a dipole antenna or any other type of antenna, at the focal point of the dish minimizes loss of energy around the edges of the dish reflector. At 2.4 GHz, a simple horn antenna made with a tin can has a gain in the order of 10 - 15 dBi.
||<:>''Figura 4.9: Un'antenna Yagi.''||

Le antenne Yagi sono utilizzate soprattutto per i collegamenti del Punto-a-Punto, hanno un guadagno da 10 a dBi 20 e ad una larhgezza del fascio orizzontale da 10 a 20 gradi.

==== Antenna a tromba ====

L'antenna a tromba deve il suo nome alla caratteristica apparenza svasata. La parte svasata può essere quadrata, rettangolare, cilindrica o conica. La direzione di massima radiazione corrisponde all'asse della tromba. È alimentata facilmente con una guida di onde, ma può essere alimentata con un cavo coassiale e una transizione adeguata. Le antenne a tromba sono comunemente usate come elemento attivo di un'antenna a disco. La tromba è puntata verso il centro del riflettore del disco. L'uso di una tromba al punto focale del disco, piuttosto che di un'antenna a dipolo o a qualunque altro tipo di antenna, minimizza la perdita di energia intorno ai bordi del riflettore del disco. A 2.4 Ghz, una semplice antenna a tromba fatta con un barattolo di latta ha un guadagno dell'ordine del 10 – 15 dBi .
Line 272: Line 271:
||<:>''Figure 4.10: Feed horn made from a food can.''||

==== Parabolic Dish ====

Antennas based on parabolic reflectors are the most common type of directive antennas when a high gain is required. The main advantage is that they can be made to have gain and directivity as large as required. The main disadvantage is that big dishes are difficult to mount and are likely to have a large windage.

Dishes up to one meter are usually made from solid material. Aluminum is frequently used for its weight advantage, its durability and good electrical characteristics. Windage increases rapidly with dish size and soon becomes a severe problem. Dishes which have a reflecting surface that uses an open mesh are frequently used. These have a poorer front-to-back ratio, but are safer to use and easier to build. Copper, aluminum, brass, galvanized steel and iron are suitable mesh materials.
||<:>''Figura 4.10: Tromba di alimentazione fatta con un barattolo di cibo.''||

==== Disco parabolico ====

Le antenne basate sui riflettori parabolici sono il tipo più comune di antenne direttive quando è richiesto un alto guadagno. Il vantaggio principale è che possono essere fatte per avere guadagno e direttività grandi quanto si vuole. Lo svantaggio principale è che i dischi grandi sono difficili da montare ed è probabile avere un grande spostamento d'aria.

I dischi fino ad un metro sono fatti solitamente da materiale solido. L'alluminio è usato frequentemente per il vantaggio del suo peso, la sua durata e le buone caratteristiche elettriche. Lo spostamento d'aria aumenta velocemente con la grandezza del disco e presto si trasformerà in un problema serio. I dischi che hanno una superficie riflettente che usa una maglia aperta sono usati frequentemente. Questi hanno un rapporto fronte-retro più povero , ma sono più sicuri da usare e più facile costruire. Il rame, l'alluminio, l'ottone, l'acciaio galvanizzato ed il ferro sono materiali adatti alla maglia.
Line 281: Line 280:
||<:>''Figure 4.11: A solid dish antenna.''|| ||<:>''Figure 4.11: Un'antenna con un disco solido.''||
Line 285: Line 284:
The BiQuad antenna is simple to build and offers good directivity and gain for Point-to-Point communications. It consists of a two squares of the same size of 1/4 wavelength as a radiating element and of a metallic plate or grid as reflector. This antenna has a beamwidth of about 70 degrees and a gain in the order of 10-12 dBi. It can be used as stand-alone antenna or as feeder for a Parabolic Dish. The polarization is such that looking at the antenna from the front, if the squares are placed side by side the polarization is vertical. L'antenna BiQuad è semplice da costruire ed offre buoni direttività e guadagno per le comunicazioni Punto-a-Punto. Consiste di due quadrati dello stesso formato di 1/4 di lunghezza d'onda come elemento di irradiamento e di una piastra o griglia metallica come riflettore. Questa antenna ha una larghezza di fascio di circa 70 gradi e un guadagno dell'ordine di 10-12 dBi. Può essere usata come antenna autonoma o come alimentatore di un disco parabolico. La polarizzazione è tale che guardando l'antenna dalla parte davanti, se i quadrati sono disposti fianco a fianco la polarizzazione è verticale.
Line 288: Line 287:
||<:>''Figure 4.12: The BiQuad.''||

==== Other Antennas ====

Many other types of antennas exist and new ones are created following the advances in technology.

 * Sector or Sectorial antennas: they are widely used in cellular telephony infrastructure and are usually built adding a reflective plate to one or more phased dipoles. Their horizontal beamwidth can be as wide as 180 degrees, or as narrow as 60 degrees, while the vertical is usually much narrower. Composite antennas can be built with many Sectors to cover a wider horizontal range (multisectorial antenna).
 * Panel or Patch antennas: they are solid flat panels used for indoor coverage, with a gain up to 20 dB.

== Reflector theory ==

The basic property of a perfect parabolic reflector is that it converts a spherical wave irradiating from a point source placed at the focus into a plane wave. Conversely, all the energy received by the dish from a distant source is reflected to a single point at the focus of the dish. The position of the focus, or focal length, is given by:
||<:>''Figura 4.12: Il BiQuad.''||

==== Altre antenne ====

Esistono molti altri tipi di antenne ed i nuovi sono stati creati con l'avanzamento nella tecnologia.

 * Settore o Antenne settoriali: sono ampiamente usati nell'infrastruttura cellulare di telefonia e solitamente sono costruiti aggiungendo una piastra riflettente a uno o più dipoli con la propria fase. La loro larghezza di fascio orizzontale può essere grande quanto 180 gradi, o stretta quanto 60 gradi, mentre il verticale è solitamente molto più stretto. Le antenne composite possono essere costruite con molti Settori per coprire una gamma orizzontale più larga (antenna multisettoriale).
 * Antenne patch a o a pannello: sono pannelli piani solidi usati per utilizzo al chiuso, con un guadagno fino a 20 dB.

== Teoria del riflettore ==

La proprietà di base di un riflettore parabolico perfetto è quella che converte un'onda sferica che si irradia da un punto sorgente corrispondente al fuoco in un'onda piana. Di contro, tutta l'energia ricevuta dal disco da una sorgente distante è riflessa in un unico punto nel fuoco del disco. La posizione del fuoco, o lunghezza focale, è data da:
Line 307: Line 306:
...where D is the dish diameter and c is the depth of the parabola at its center.

The size of the dish is the most important factor since it determines the maximum gain that can be achieved at the given frequency and the resulting beamwidth. The gain and beamwidth obtained are given by:
...dove D è il diametro del disco e c è la profondità della parabola al suo centro.

La grandezza del disco è il fattore più importante poiché determina il guadagno massimo che può essere realizzato alla data frequenza ed alla larghezza di fascio risultante. Il guadagno e la larghezza di fascio ottenuti sono dati da:
Line 312: Line 311:
       (π × D)^2
Gain = --------- × n
          λ^2

            70 λ
Beamwidth = ----
             D
     (π × D)^2
Guadagno = --------- × n
              λ^2

                      70 λ
Larghezza di fascio = ----
                       D
Line 321: Line 320:
...where D is the dish diameter and n is the efficiency. The efficiency is determined mainly by the effectiveness of illumination of the dish by the feed, but also by other factors. Each time the diameter of a dish is doubled, the gain is four times, or 6 dB, greater. If both stations double the size of their dishes, signal strength can be increased of 12 dB, a very substantial gain. An efficiency of 50% can be assumed when hand-building the antenna.

The ratio f / D (focal length/diameter of the dish) is the fundamental factor governing the design of the feed for a dish. The ratio is directly related to the beamwidth of the feed necessary to illuminate the dish effectively. Two dishes of the same diameter but different focal lengths require different design of feed if both are to be illuminated efficiently. The value of 0.25 corresponds to the common focal-plane dish in which the focus is in the same plane as the rim of the dish.

== Amplifiers ==

As mentioned earlier, antennas do not actually create power. They simply direct all available power into a particular pattern. By using a '''''power amplifier''''', you can use DC power to augment your available signal. An amplifier connects between the radio transmitter and the antenna, and has an additional lead that connects to a power source. Amplifiers are available that work at 2.4GHz, and can add several Watts of power to your transmission. These devices sense when an attached radio is transmitting, and quickly power up and amplify the signal. They then switch off again when transmission ends. When receiving, they also add amplification to the signal before sending it to the radio.

Unfortunately, simply adding amplifiers will not magically solve all of your networking problems. We do not discuss power amplifiers at length in this book because there are a number of significant drawbacks to using them:

 * '''They are expensive'''. Amplifiers must work at relatively wide bandwidths at 2.4GHz, and must switch quickly enough to work for Wi-Fi applications. These amplifiers do exist, but they tend to cost several hundred dollars per unit.
 * '''You will need at least two'''. Whereas antennas provide reciprocal gain that benefits both sides of a connection, amplifiers work best at amplifying a transmitted signal. If you only add an amplifier to one end of a link with insufficient antenna gain, it will likely be able to be heard but will not be able to hear the other end.
 * '''They provide no additional directionality.''' Adding antenna gain provides both gain and directionality benefits to both ends of the link. They not only improve the available amount of signal, but tend to reject noise from other directions. Amplifiers blindly amplify both desired and interfering signals, and can make interference problems worse.
 * '''Amplifiers generate noise for other users of the band. '''By increasing your output power, you are creating a louder source of noise for other users of the unlicensed band. This may not be much of an issue today in rural areas, but it can cause big problems in populated areas. Conversely, adding antenna gain will improve your link and can actually decrease the noise level for your neighbors.
 * '''Using amplifiers probably isn't legal. '''Every country imposes power limits on use of unlicensed spectrum. Adding an antenna to a highly amplified signal will likely cause the link to exceed legal limits.

Using amplifiers is often compared to the inconsiderate neighbor who wants to listen to the radio outside their home, and so turns it up to full volume. They might even "improve" reception by pointing their speakers out the window. While they may now be able to hear the radio, so must everyone else on the block. This approach may scale to exactly one user, but what happens when the neighbors decide to do the same thing with their radios? Using amplifiers for a wireless link causes roughly the same effect at 2.4GHz. Your link may "work better" for the moment, but you will have problems when other users of the band decide to use amplifiers of their own.

By using higher gain antennas rather than amplifiers, you avoid all of these problems. Antennas cost far less than amps, and can improve a link simply by changing the antenna on one end. Using more sensitive radios and good quality cable also helps significantly on long distance shots. These techniques are unlikely to cause problems for other users of the band, and so we recommend pursuing them long before adding amplifiers.

== Practical antenna designs ==

The cost of 2.4GHz antennas has fallen dramatically since the introduction of 802.11b. Innovative designs use simpler parts and fewer materials to achieve impressive gain with relatively little machining. Unfortunately, availability of good antennas is still limited in many areas of the world, and importing them can be prohibitively expensive. While actually designing an antenna can be a complex and error-prone process, constructing antennas from locally available components is very straightforward, and can be a lot of fun. We present four practical antenna designs that can be built for very little money.
…dove D è il diametro del disco e n è l'efficienza. L'efficienza è determinata principalmente dall'efficacia di illuminazione del disco dall'alimentazione, ma anche da altri fattori. Ogni volta che il diametro di un disco è raddoppiato, il guadagno è più grande di quattro volte, o di 6 dB. Se entrambe le stazioni raddoppiano la grandezza dei loro dischi, l'intensità del segnale può essere aumentata di 12 dB, un guadagno molto notevole. Un'efficienza del 50% può essere raggiunta con un'antenna costruita a mano.

Il rapporto f / D (lunghezza focale/diametro del disco) è il fattore fondamentale che governa il progetto dell'alimentazione di un disco. Il rapporto è direttamente collegato alla larghezza di fascio dell'alimentazione necessaria per illuminare efficacemente il piatto. Due piatti dello stesso diametro ma con lunghezze focali differenti richiedono un progetto differente di alimentazione se entrambi devono essere illuminati efficientemente. Il valore di 0.25 corrisponde al comune piano focale del disco in cui il fuoco è sullo stesso piano del bordo del disco.

== Amplificatori ==

Come menzionato precedentemente, le antenne attualmente non generano realmente potenza. Esse semplicemente dirigono tutta la potenza disponibile in un particolare percorso. Usando un '''''amplificatore di potenza''''', potete usare la corrente continua per aumentare il segnale disponibile. Un amplificatore si connette fra la radiotrasmittente e l'antenna ed ha un cavo supplementare che si collega ad una sorgente di energia. Sono disponibili amplificatori che lavorano a 2.4GHz, e possono aggiungere parecchi Watt di potenza alla vostra trasmissione. Questi dispositivi sentono quando una radio collegata sta trasmettendo e rapidamente potenziano ed amplificano il segnale. Poi si spengono di nuovo quando la trasmissione si conclude. Mentre ricevere, inoltre aggiungono l'amplificazione al segnale prima di spedirla alla radio.

Purtroppo, aggiungere semplicemente gli amplificatori non risolverà magicamente tutti i vostri problemi della rete. Non parleremo a lungo degli amplificatori di potenza in questo libro perché ci sono un certo numero di svantaggi significativi usandoli:

 * '''Sono costosi'''. Gli amplificatori devono funzionare alle larghezze di banda abbastanza grandi a 2.4GHz e devono commutare abbastanza rapidamente per funzionare con applicazioni Wi-Fi. Questi amplificatori esistono, ma tendono a costare diverse centinaia dollari l'uno.
 * '''Ne avrete bisogno almeno di due'''. Considerando che le antenne forniscono il guadagno reciproco che avvantaggia entrambi i lati di un collegamento, gli amplificatori lavorano al meglio amplificando un segnale trasmesso. Se aggiungete soltanto un amplificatore alla fine di un collegamento con guadagno insufficiente dell'antenna, probabilmente potrà essere sentito dalla sua parte ma non dall'altra estremità.
 * '''Non forniscono direttività supplementare'''. Aggiungendo guadagno dell'antenna si ottengono sia benefici di direttività che di guadagno ad entrambe le estremità del collegamento. Non solo la quantità disponibile di segnale migliora, ma c'e' la tendenza a rifiutare il rumore proveniente da altre direzioni. Gli amplificatori amplificano ciecamente sia segnali voluti che interferenti e possono aumentare i problemi di interferenza.
 * '''Gli amplificatori generano rumore per altri utenti della banda'''. Aumentando la vostra potenza in uscita, state generando una sorgente più forte di rumore per altri utenti della banda non autorizzati. Ciò non può avere molta importanza oggi nelle zone rurali, ma può causare grandi problemi nelle zone popolate. Di contro, aumentare guadagno dell'antenna migliorerà il vostro collegamento e può realmente far diminuire il rumore per i vostri vicini.
 * '''Usare amplificatori probabilmente non è legale'''. Ogni paese impone limiti di potenza per l'uso di spettri non autorizzati. Aggiungere un'antenna ad un segnale altamente amplificato probabilmente indurrà il collegamento ad eccedere i limiti legali.

L'uso degli amplificatori è spesso confrontato al vicino sconsiderato che desiderasse ascoltare la radio stando fuori della sua casa e la mettesse a tutto volume. Egli potrebbe "migliorare" la ricezione orientando i suoi altoparlanti fuori della finestra. Ora come egli può sentire la radio, anche tutti gli altri nel quartiere la potrebbero sentire. Questo metodo può funzionare esattamente con un utente, ma che cosa accadrebbe se i vicini decidessero la stessa cosa con le loro radio? L'uso di amplificatori per un collegamento wireless causa approssimativamente lo stesso effetto a 2.4GHz. Il vostro collegamento può "lavorare meglio" momentaneamente, ma avrete problemi quando altri utenti della banda decidessero di utilizzare i propri amplificatori.

Usando un guadagno delle antenne più alto piuttosto che gli amplificatori, eviterete tutti questi problemi. Le antenne costano molto meno degli amplificatori e si può migliorare semplicemente un collegamento cambiando l'antenna su un'estremità. L'uso di radio più sensibili ed un cavo di buona qualità inoltre aiuta significativamente nelle grandi distanze. E' improbabile che queste tecniche possano causare problemi per altri utenti della banda perciò suggeriamo di perseguirle molto di più che aggiungere amplificatori.

== Pratici progetti di antenna ==

l costo delle antenne di 2.4GHz è sceso significativamente con l'introduzione di 802.11b. I progetti innovatori usano parti più semplici e pochi materiali per realizzare un guadagno impressionante con relativamente poco lavoro. Purtroppo, la disponibilità di buone antenne ancora è limitata ad alcune zone del mondo ed importarle può essere costoso in maniera proibitiva. Mentre realmente progettare un'antenna può essere un processo complesso e soggetto ad errori, costruire antenne con componenti disponibili in loco è molto semplice e può essere molto divertente. Presentiamo quattro progetti pratici di antenna che possono essere sviluppati con pochissimi soldi.
Line 387: Line 386:
||<:>http://wiki.wndw.net/images/figures/en/figure-4.15.png||
||<:>''Figure 4.15: Make the wire as straight as you can.''||

 2. With a marker, draw a line at 2.5 cm starting from one end of the wire. On this line, bend the wire at 90 degrees with the help of the vice and of the hammer.

||<:>http://wiki.wndw.net/images/figures/en/figure-4.16.png||
||<:>''Figure 4.16: Gently tap the wire to make a sharp bend.''||

 3. Draw another line at a distance of 3.6 cm from the bend. Using the vice and the hammer, bend once again the wire over this second line at 90 degrees, in the opposite direction to the first bend but in the same plane. The wire should look like a 'Z'.

||<:>http://wiki.wndw.net/images/figures/en/figure-4.17.png||
||<:>''Figure 4.17: Bend the wire into a "Z" shape.''||

 4. We will now twist the 'Z' portion of the wire to make a coil with a diameter of 1 cm. To do this, we will use the pipe or the drill bit and curve the wire around it, with the help of the vice and of the pliers.

||<:>http://wiki.wndw.net/images/figures/en/figure-4.18.png||
||<:>''Figure 4.18: Bend the wire around the drill bit to make a coil.''||

The coil will look like this:

||<:>http://wiki.wndw.net/images/figures/en/figure-4.19.png||
||<:>''Figure 4.19: The completed coil.''||

 5. You should make a second coil at a distance of 7.8 cm from the first one. Both coils should have the same turning direction and should be placed on the same side of the wire. Make a third and a fourth coil following the same procedure, at the same distance of 7.8 cm one from each other. Trim the last phased element at a distance of 8.0 cm from the fourth coil.

||<:>http://wiki.wndw.net/images/figures/en/figure-4.20.png||
||<:>''Figure 4.20: Try to keep it as straight possible.''||

If the coils have been made correctly, it should now be possible to insert a pipe through all the coils as shown.

||<:>http://wiki.wndw.net/images/figures/en/figure-4.21.png||
||<:>''Figure 4.21: Inserting a pipe can help to straighten the wire.''||

 6. With a marker and a ruler, draw the diagonals on the metallic plate, finding its center. With a small diameter drill bit, make a pilot hole at the center of the plate. Increase the diameter of the hole using bits with an increasing diameter.

||<:>http://wiki.wndw.net/images/figures/en/figure-4.22.png||
||<:>''Figure 4.22: Drilling the hole in the metal plate.''||

The hole should fit the N connector exactly. Use a file if needed.

||<:>http://wiki.wndw.net/images/figures/en/figure-4.23.png||
||<:>''Figure 4.23: The N connector should fit snugly in the hole.''||

 7. To have an antenna impedance of 50 Ohms, it is important that the visible surface of the internal insulator of the connector (the white area around the central pin) is at the same level as the surface of the plate. For this reason, cut 0.5 cm of copper pipe with an external diameter of 2 cm, and place it between the connector and the plate.

||<:>http://wiki.wndw.net/images/figures/en/figure-4.24.png||
||<:>''Figure 4.24: Adding a copper pipe spacer helps to match the impedance of the antenna to 50 Ohms.''||

 8. Screw the nut to the connector to fix it firmly on the plate using the spanner.

||<:>http://wiki.wndw.net/images/figures/en/figure-4.25.png||
||<:>''Figure 4.25: Secure the N connector tightly to the plate.''||

 9. Smooth with the file the side of the wire which is 2.5 cm long, from the first coil. Tin the wire for around 0.5 cm at the smoothed end helping yourself with the vice.

||<:>http://wiki.wndw.net/images/figures/en/figure-4.26.png||
||<:>''Figure 4.26: Add a little solder to the end of the wire to "tin" it prior to soldering.''||

 10. With the soldering iron, tin the central pin of the connector. Keeping the wire vertical with the pliers, solder its tinned side in the hole of the central pin. The first coil should be at 3.0 cm from the plate.

||<:>http://wiki.wndw.net/images/figures/en/figure-4.27.png||
||<:>''Figure 4.27: The first coil should start 3.0 cm from the surface of the plate.''||

 11. We are now going to stretch the coils extending the total vertical length of the wire. Using the use the vice and the pliers, you should pull the cable so that the final length of the coil is of 2.0 cm.

||<:>http://wiki.wndw.net/images/figures/en/figure-4.28.png||
||<:>''Figure 4.28: Stretching the coils. Be very gentle and try not to scrape the surface of the wire with the pliers.''||

 12. Repeat the same procedure for the other three coils, stretching their length to 2.0 cm.

||<:>http://wiki.wndw.net/images/figures/en/figure-4.29.png||
||<:>''Figure 4.29: Repeat the stretching procedure for all of the remaining coils.''||

 13. At the end the antenna should measure 42.5 cm from the plate to the top.

||<:>http://wiki.wndw.net/images/figures/en/figure-4.30.png||
||<:>''Figure 4.30: The finished antenna should be 42.5 cm from the plate to the end of the wire.''||

 14. If you have a Spectrum Analyzer with Tracking Generator and a Directional Coupler, you can check the curve of the reflected power of the antenna. The picture below shows the display of the Spectrum Analyzer.

||<:>http://wiki.wndw.net/images/figures/en/figure-4.31.png||
||<:>''Figure 4.31: A spectrum plot of the reflected power of the collinear omni.''||

If you intend to use this antenna outside, you will need to weatherproof it. The simplest method is to enclose the whole thing in a large piece of PVC pipe closed with caps. Cut a hole at the bottom for the transmission line, and seal the antenna shut with silicone or PVC glue.
 ||<:>http://wiki.wndw.net/images/figures/en/figure-4.15.png||
 ||<:>''Figure 4.15: Make the wire as straight as you can.''||

 1. With a marker, draw a line at 2.5 cm starting from one end of the wire. On this line, bend the wire at 90 degrees with the help of the vice and of the hammer.

 ||<:>http://wiki.wndw.net/images/figures/en/figure-4.16.png||
 ||<:>''Figure 4.16: Gently tap the wire to make a sharp bend.''||

 1. Draw another line at a distance of 3.6 cm from the bend. Using the vice and the hammer, bend once again the wire over this second line at 90 degrees, in the opposite direction to the first bend but in the same plane. The wire should look like a 'Z'.

 ||<:>http://wiki.wndw.net/images/figures/en/figure-4.17.png||
 ||<:>''Figure 4.17: Bend the wire into a "Z" shape.''||

 1. We will now twist the 'Z' portion of the wire to make a coil with a diameter of 1 cm. To do this, we will use the pipe or the drill bit and curve the wire around it, with the help of the vice and of the pliers.

 ||<:>http://wiki.wndw.net/images/figures/en/figure-4.18.png||
 ||<:>''Figure 4.18: Bend the wire around the drill bit to make a coil.''||

 The coil will look like this:

 ||<:>http://wiki.wndw.net/images/figures/en/figure-4.19.png||
 ||<:>''Figure 4.19: The completed coil.''||

 1. You should make a second coil at a distance of 7.8 cm from the first one. Both coils should have the same turning direction and should be placed on the same side of the wire. Make a third and a fourth coil following the same procedure, at the same distance of 7.8 cm one from each other. Trim the last phased element at a distance of 8.0 cm from the fourth coil.

 ||<:>http://wiki.wndw.net/images/figures/en/figure-4.20.png||
 ||<:>''Figure 4.20: Try to keep it as straight possible.''||

 If the coils have been made correctly, it should now be possible to insert a pipe through all  the coils as shown.

 
||<:>http://wiki.wndw.net/images/figures/en/figure-4.21.png||
 ||<:>''Figure 4.21: Inserting a pipe can help to straighten the wire.''||

 1. With a marker and a ruler, draw the diagonals on the metallic plate, finding its center. With a small diameter drill bit, make a pilot hole at the center of the plate. Increase the diameter of the hole using bits with an increasing diameter.

 ||<:>http://wiki.wndw.net/images/figures/en/figure-4.22.png||
 ||<:>''Figure 4.22: Drilling the hole in the metal plate.''||

 The hole should fit the N connector exactly. Use a file if needed.

 ||<:>http://wiki.wndw.net/images/figures/en/figure-4.23.png||
 ||<:>''Figure 4.23: The N connector should fit snugly in the hole.''||

 1. To have an antenna impedance of 50 Ohms, it is important that the visible surface of the internal insulator of the connector (the white area around the central pin) is at the same level as the surface of the plate. For this reason, cut 0.5 cm of copper pipe with an external diameter of 2 cm, and place it between the connector and the plate.

 ||<:>http://wiki.wndw.net/images/figures/en/figure-4.24.png||
 ||<:>''Figure 4.24: Adding a copper pipe spacer helps to match the impedance of the antenna to 50 Ohms.''||

 1. Screw the nut to the connector to fix it firmly on the plate using the spanner.

 ||<:>http://wiki.wndw.net/images/figures/en/figure-4.25.png||
 ||<:>''Figure 4.25: Secure the N connector tightly to the plate.''||

 1. Smooth with the file the side of the wire which is 2.5 cm long, from the first coil. Tin the wire for around 0.5 cm at the smoothed end helping yourself with the vice.

 ||<:>http://wiki.wndw.net/images/figures/en/figure-4.26.png||
 ||<:>''Figure 4.26: Add a little solder to the end of the wire to "tin" it prior to soldering.''||

 1. With the soldering iron, tin the central pin of the connector. Keeping the wire vertical with the pliers, solder its tinned side in the hole of the central pin. The first coil should be at 3.0 cm from the plate.

 
||<:>http://wiki.wndw.net/images/figures/en/figure-4.27.png||
 ||<:>''Figure 4.27: The first coil should start 3.0 cm from the surface of the plate.''||

 1. We are now going to stretch the coils extending the total vertical length of the wire. Using the use the vice and the pliers, you should pull the cable so that the final length of the coil is of 2.0 cm.

 ||<:>http://wiki.wndw.net/images/figures/en/figure-4.28.png||
 ||<:>''Figure 4.28: Stretching the coils. Be very gentle and try not to scrape the surface of the wire with the pliers.''||

 1. Repeat the same procedure for the other three coils, stretching their length to 2.0 cm.

 ||<:>http://wiki.wndw.net/images/figures/en/figure-4.29.png||
 ||<:>''Figure 4.29: Repeat the stretching procedure for all of the remaining coils.''||

 1. At the end the antenna should measure 42.5 cm from the plate to the top.

 ||<:>http://wiki.wndw.net/images/figures/en/figure-4.30.png||
 ||<:>''Figure 4.30: The finished antenna should be 42.5 cm from the plate to the end of the wire.''||

 1. If you have a Spectrum Analyzer with Tracking Generator and a Directional Coupler, you can check the curve of the reflected power of the antenna. The picture below shows the display of the Spectrum Analyzer.

 ||<:>http://wiki.wndw.net/images/figures/en/figure-4.31.png||
 ||<:>''Figure 4.31: A spectrum plot of the reflected power of the collinear omni.''||

 If you intend to use this antenna outside, you will need to weatherproof it. The simplest method is to enclose the whole thing in a large piece of PVC pipe closed with caps. Cut a hole at the bottom for the transmission line, and seal the antenna shut with silicone or PVC glue.
Line 484: Line 483:
{{{  {{{
Line 486: Line 485:
λG = ------------------------
     sqrt(1 - (λ / 1.706D)^2)
}}}

For D = 7.3 cm, we need a can of at least 56.4 cm, while for D = 9.2 cm we need a can of at least 14.8 cm. Generally the smaller the diameter, the longer the can should be. For our example, we will use oil cans that have a diameter of 8.3 cm and a height of about 21 cm.
 λG = ------------------------
  sqrt(1 - (λ / 1.706D)^2)
 }}}

 For D = 7.3 cm, we need a can of at least 56.4 cm, while for D = 9.2 cm we need a can of at least 14.8 cm. Generally the smaller the diameter, the longer the can should be. For our example, we will use oil cans that have a diameter of 8.3 cm and a height of about 21 cm.
Line 494: Line 493:
{{{
S = 0.25 λG
}}}

Its length should be 0.25 λ, which at 2.44 GHz corresponds to 3.05 cm.

The gain for this antenna will be in the order of 10 to 14 dBi, with a beamwidth of around 60 degrees.

||<:>http://wiki.wndw.net/images/figures/en/figure-4.33.png||
||<:>''Figure 4.33: The finished cantenna.''||
    {{{
    S = 0.25 λG
    }}}

    Its length should be 0.25 λ, which at 2.44 GHz corresponds to 3.05 cm.

    The gain for this antenna will be in the order of 10 to 14 dBi, with a beamwidth of around 60 degrees.

    ||<:>http://wiki.wndw.net/images/figures/en/figure-4.33.png||
    ||<:>''Figure 4.33: The finished cantenna.''||
Line 533: Line 532:
||<:>http://wiki.wndw.net/images/figures/en/figure-4.35.png||
||<:>''Figure 4.35: Be careful of sharp edges when opening the can.''||

The circular disk has a very sharp edge. Be careful in handling it! Empty the can and wash it with soap. If the can contained pineapple, cookies, or some other tasty treat, have a friend serve the food.
 ||<:>http://wiki.wndw.net/images/figures/en/figure-4.35.png||
 ||<:>''Figure 4.35: Be careful of sharp edges when opening the can.''||

 The circular disk has a very sharp edge. Be careful in handling it! Empty the can and wash it with soap. If the can contained pineapple, cookies, or some other tasty treat, have a friend serve the food.
Line 540: Line 539:
||<:>http://wiki.wndw.net/images/figures/en/figure-4.36.png||
||<:>''Figure 4.36: Mark the hole before drilling.''||
 ||<:>http://wiki.wndw.net/images/figures/en/figure-4.36.png||
 ||<:>''Figure 4.36: Mark the hole before drilling.''||
Line 545: Line 544:
||<:>http://wiki.wndw.net/images/figures/en/figure-4.37.png||
||<:>''Figure 4.37: Carefully drill a pilot hole, then use a larger bit to finish the job.''||
 ||<:>http://wiki.wndw.net/images/figures/en/figure-4.37.png||
 ||<:>''Figure 4.37: Carefully drill a pilot hole, then use a larger bit to finish the job.''||
Line 550: Line 549:
||<:>http://wiki.wndw.net/images/figures/en/figure-4.38.png||
||<:>''Figure 4.38: Tin the end of the wire before soldering. ''||
 ||<:>http://wiki.wndw.net/images/figures/en/figure-4.38.png||
 ||<:>''Figure 4.38: Tin the end of the wire before soldering. ''||
Line 555: Line 554:
||<:>http://wiki.wndw.net/images/figures/en/figure-4.39.png||
||<:>''Figure 4.39: Solder the wire to the gold cup on the N connector.''||
 ||<:>http://wiki.wndw.net/images/figures/en/figure-4.39.png||
 ||<:>''Figure 4.39: Solder the wire to the gold cup on the N connector.''||
Line 560: Line 559:
||<:>http://wiki.wndw.net/images/figures/en/figure-4.40.png||
||<:>''Figure 4.40: The length of the wire is critical.''||
 ||<:>http://wiki.wndw.net/images/figures/en/figure-4.40.png||
 ||<:>''Figure 4.40: The length of the wire is critical.''||
Line 565: Line 564:
||<:>http://wiki.wndw.net/images/figures/en/figure-4.41.png||
||<:>''Figure 4.41: Assemble the antenna.''||
 ||<:>http://wiki.wndw.net/images/figures/en/figure-4.41.png||
 ||<:>''Figure 4.41: Assemble the antenna.''||
Line 570: Line 569:
||<:>http://wiki.wndw.net/images/figures/en/figure-4.42.png||
||<:>''Figure 4.42: Your finished cantenna. ''||
 ||<:>http://wiki.wndw.net/images/figures/en/figure-4.42.png||
 ||<:>''Figure 4.42: Your finished cantenna. ''||
  • ## Please edit system and help pages ONLY in the moinmaster wiki! For more

#format wiki #language it #pragma section-numbers off


TableOfContents


Antenne & Linee di Trasmissione

Il trasmettitore che genera l'alimentazione RF per guidare l'antenna è situato solitamente ad una certa distanza dai terminali dell'antenna. Il link di collegamento fra i due è la linea di trasmissione RF. Il suo scopo è di trasportare l'alimentazione RF da un posto ad un altro e fare ciò il più efficientemente possibile. Dal lato ricevente, l'antenna è responsabile della selezione di ogni segnale radiofonico nell'aria e del loro passaggio alla ricevente con la minima quantità di distorsione, in modo che l'apparato radio abbia la migliore possibilità di decodificare il segnale. Per questi motivi, il cavo RF ha un ruolo molto importante nei sistemi radiofonici: deve effettuare l'integrità dei segnali in entrambi i sensi.

Ci sono due categorie principali di linee della trasmissione: cavi e guide di onde. Entrambi i tipi funzionano bene per trasportare efficientemente l'alimentazione RF a 2.4GHz.

Cavi

I cavi RF sono, per le frequenze più alte dell'HF, quasi esclusivamente cavi coassiali (o più brevemente coax, derivato dalle parole "of common axis"). I cavi coassiali hanno un nucleo centrale conduttore circondato da un materiale non conduttivo denominato dielettrico o semplicemente isolamento. Il dielettrico a sua volta è circondato completamente da una protezione che è fatta spesso di fili intrecciati. Il dielettrico impedisce il collegamento elettrico fra il nucleo e la protezione. Per concludere, il coassiale è protetto da una copertura esterna che è fatta generalmente da un materiale PVC. Il conduttore interno trasporta il segnale RF e lo schermo esterno protegge il segnale RF dalle radiazioni dell'atmosfera ed inoltre impedisce ai segnali esterni di interferire con il segnale trasportato dal nucleo. Un altro fatto interessante è che il segnale elettrico viaggia sempre lungo lo strato esterno del conduttore centrale: più grande è il conduttore centrale, meglio sarà il segnale che fluirà. Ciò è denominata "Effetto pelle".

http://wiki.wndw.net/images/figures/en/figure-4.1.png

Figura 4.1: Cavo coassiale con guaina, schermo, dielettrico e nucleo conduttore.

Anche se la costruzione coassiale è buona a mantenere il segnale sul filo del nucleo, c'è una certa resistenza al flusso elettrico: quindi mentre il segnale viaggia attraverso il nucleo, esso diminuirà. Questa diminuzione è conosciuta come attenuazione e per le linee di trasmissione è misurato in decibels al metro (dB/m). Il tasso di attenuazione è funzione della frequenza del segnale e della costruzione fisica del cavo stesso . A mano a mano che la frequenza del segnale aumenta, aumenta anche la relativa attenuazione. Ovviamente, occorre minimizzare l'attenuazione del cavo il più possibile mantenendo il cavo molto corto ed usando cavi di alta qualità.

Qui ci sono alcuni punti da considerare quando si sceglie un cavo da usare con i dispositivi a microonde:

  1. "Più corto è meglio è!" La prima regola quando installate una parte di cavo è di provare a renderlo il più corto possibile. La perdita di potenza non è lineare, così raddoppiare la lunghezza del cavo significa perdere molto più del doppio la potenza. Nello stesso modo, ridurre la lunghezza del cavo della metà significa raddoppiare la potenza all'antenna. La soluzione migliore è disporre il trasmettitore il più vicino possibile all'antenna, anche quando questo significa posizionarlo su una torre.
  2. "Più è economico più è peggiore!" La seconda regola d'oro è che qualunque cifra investiate per acquistare un cavo di buona qualità è un affare. I cavi economici sono adatti per essere usati alle frequenze basse, come il VHF. Le microonde richiedono cavi della più alta qualità disponibile. Tutte le altre opzioni sono solo fatica sprecata.

  3. Evitare sempre RG-58. E' adatto alle reti thin Ethernet , radiofrequenze CB o VHF, ma non per microonde.
  4. Evitare sempre RG-213. E' adatto alle radiofrequenze CB e HF. In questo caso il diametro del cavo non corrisponde ad un'alta qualità, o ad un basso livello di attenuazione.
  5. Per quanto possibile, usare i cavi Heliax (anche chiamato "foam") per il collegamento del trasmettitore all'antenna. Quando Heliax non è disponibile, usate il miglior cavo LMR che possiate trovare. I cavi Heliax hanno un conduttore centrale solido o tubolare con un conduttore esterno solido ondulato per permettere loro di flettere. Heliax può essere costruito in due modi, usando l'aria o la gomma piuma come dielettrico. L'heliax con aria come dielettrico è più costoso e garantisce la perdita minima, ma è molto difficile da maneggiare. L'heliax con dielettrico in gomma piuma è di qualità minore, ma è meno costoso e di più facile ad installazione. Una procedura speciale è richiesta quando si saldano i connettori per mantenere il dielettrico in gomma piuma asciutto e intatto. LMR è una marca di cavo coassiale disponibile in vari diametri che funziona bene alle frequenze delle microonde. LMR-400 e LMR-600 sono un'alternativa ad Heliax comunemente usata.

  6. Per quanto possibile, usare i cavi che pre-crimped e testati in un laboratorio adeguato. L'installazione dei connettori ai cavi è un problema complesso ed è difficile da fare correttamente anche con gli attrezzi adeguati. A meno che non possiate disporre di un'apparecchiatura che possa verificare un cavo fatto da voi stessi (come un analizzatore di spettro e un generatore di segnale, o un time domain reflectometer), fare un'analisi dei guasti di una rete che usa tale cavo può essere difficile.
  7. Non abusare della vostra linea della trasmissione. Mai calpestare un cavo, piegarlo troppo, o provare a disconnettere un connettore tirando direttamente il cavo. Tutti questi comportamenti possono cambiare la caratteristica meccanica del cavo e quindi la sua impedenza, possono accorciare il conduttore interno allo schermo, o persino interrompere la linea. Questi problemi sono difficili da trovare e riconoscere e possono condurre ad un comportamento imprevedibile del collegamento radiofonico.

Guide di onde

Essendo superiore a 2 gigahertz, la lunghezza d'onda è abbastanza corta da permettere un trasferimento di energia pratico ed efficiente attraverso mezzi differenti. Una guida di onde è un condotto tramite cui l'energia è trasmessa sotto forma di onde elettromagnetiche. Il condotto funge da contorno che limita le onde nello spazio incluso. L'effetto pelle impedisce a tutti gli effetti elettromagnetici di uscire fuori della guida. I campi elettromagnetici sono propagati tramite la guida di onde per mezzo di riflessioni contro le sue pareti interne, che sono considerate conduttori perfetti. L'intensità dei campi è più grande al centro lungo la dimensione X e deve diminuire a zero sulle pareti perché l'esistenza di ogni campo parallelo alle pareti della superficie entrando nel conduttore perfetto causerebbe una corrente infinita. Le guide di onde, naturalmente, non possono trasportare RF in questa situazione.

Le dimensioni X, Y e Z di una guida di onde rettangolare possono essere viste nella seguente figura:

http://wiki.wndw.net/images/figures/en/figure-4.2.png

Figura 4.2: Le dimensioni X, Y e Z di una guida di onde rettangolare.

C'è un numero infinito di maniere in cui i campi elettrici e magnetici possono organizzarsi in una guida di onde per frequenze sopra la frequenza di taglio basso. Ciascuna di queste configurazioni del campo è denominata modo. I modi possono essere separati in due gruppi generali. Un gruppo, indicato TM (Transverse Magnetic), ha il campo magnetico interamente trasversale al verso della propagazione, ma ha una componente del campo elettrico nel verso della propagazione. L'altro tipo, indicato TE (Transverse Electric) ha il campo elettrico interamente trasversale, ma ha una componente del campo magnetico nel verso della propagazione.

Il modo di propagazione è identificato dalle lettere del gruppo seguite da due numeri. Per esempio, TE 10, TM 11, ecc. Il numero di modi possibili aumenta con la frequenza per un data grandezza della guida e vi è soltanto un possibile modo, denominato il modo dominante, associato alla frequenza più bassa che possa essere trasmessa. In una guida rettangolare, la dimensione critica è X. Questa dimensione deve essere più grande di 0.5 λ alla frequenza più bassa da trasmettere. n pratica, la dimensione di Y solitamente è resa circa uguale a 0.5 X per evitare la possibilità di operare in modi diversi da quelli del modo dominante. Possono essere usate forme a sezione trasversale in alternativa al rettangolo, e la forma più importante è il tubo circolare. Le stesse considerazioni si applicano come nel caso rettangolare. Le dimensioni di lunghezza d'onda per le guide rettangolari e circolari sono date nella seguente tabella, in cui X è la larghezza di una guida rettangolare ed r è il raggio di una guida circolare. Tutte le figure si applicano al modo dominante.

Tipo di guida

Rettangolare

Circolare

Taglio della lunghezza d'onda

2X

3.41r

La più lunga lunghezza d'onda trasmessa con poca attenuazione

1.6X

3.2r

La più corta lunghezza d'onda prima che il modo seguente divenga possibile

1.1X

2.8r

L'energia può essere introdotta o essere estratta da una guida di onde per mezzo di un campo elettrico o magnetico. Il trasferimento di energia tipicamente accade attraverso una linea coassiale. Due metodi possibili per l'accoppiamento ad una linea coassiale consistono nell'usare il conduttore interno della linea coassiale, o attraverso una spira. Una sonda che è semplicemente una piccola estensione del conduttore interno della linea coassiale può essere orientata in modo che sia parallela alle linee elettriche di forza. Una spira può essere organizzata in modo che includa alcune delle linee magnetiche di forza. Il punto in cui l'accoppiamento massimo è ottenuto dipende dal modo della propagazione nella guida o nella cavità. L'accoppiamento è massimo quando il dispositivo dell'accoppiamento è nel campo più intenso.

Se una guida di onde è lasciata aperta ad un'estremità, irradierà l'energia (cioè può essere usata come antenna piuttosto che come linea della trasmissione). Questa radiazione può essere aumentata svasando la guida di onde per formare un'antenna a tromba piramidale. Vedremo un esempio di una pratica antenna da una guida di onde per WiFi più avanti in questo capitolo.

Tipo di Cavo

Nucleo

Dielettrico

Schermo

Guaina

RG-58

0.9 mm

2.95 mm

3.8 mm

4.95 mm

RG-213

2.26 mm

7.24 mm

8.64 mm

10.29 mm

LMR-400

2.74 mm

7.24 mm

8.13 mm

10.29 mm

3/8" LDF

3.1 mm

8.12 mm

9.7 mm

11 mm

Questa è una tabella contenente varie grandezze di comuni linee di trasmissione. Scegliete il cavo migliore che possiate permettervi con la più bassa attenuazione possibile alla frequenza che intendete usare per il vostro collegamento wireless.

Connettori e adattatori

I connettori permettono di connettere un cavo ad un altro cavo o a un componente della catena RF. Vi è una grande varietà di adattatori e connettori progettati per i vari formati e tipi di linee coassiali. Ne descriveremo alcuni più dei popolari.

I connettori BNC furono progettati verso la fine degli anni 40. BNC significa Bayonet Neill Concelman dal nome degli uomini che lo inventarono:Paul Neill and Carl Concelman. La serie di prodotti BNC comprende un connettore miniaturizzato di connessione/sconnessione veloce. E' caratterizzato da due alette a baionetta sul connettore femmina, e si blocca con soltanto un quarto di giro del dado di aggancio. I BNC sono idealmente adatti per terminazioni di cavi miniature e subminiature di cavi coassiali (da RG-58 a RG-179, RG-316, ecc.). Hanno prestazioni accettabili fino a pochi gigahertz. Sono trovati più comunemente sulle attrezzature di prova e sui cavi coassiali Ethernet 10base2.

Anche i connettori TNC sono stati inventati da Neill e da Concelman ed sono una variazione filettata del BNC. A causa della migliore interconnessione fornita dal connettore filettato, i connettori TNC funzionano bene con circa 12GHz. I TNC significa Threaded Neill Concelman.

Il tipo N (ancora di Neill, anche se a volte attribuito a "Navy") originalmente è stato sviluppato durante la seconda guerra mondiale. Arrivano fino a 18 gigahertz e sono comunemente molto usati per applicazioni con microonde. Sono disponibili per quasi tutti i tipi di cavi. Sia i giunti della spina/cavo che della spina/presa sono impermeabili, fornendo una morsa per filo elettrico efficace.

SMA è un acronimo per SubMiniature versione A ed è stato sviluppato negli anni 60. I connettori SMA hanno precisione, unità di miniatura che forniscono prestazioni elettriche eccellenti fino a 18 gigahertz. Questi connettori ad alto rendimento sono compatti nel formato e meccanicamente hanno durata eccezionale.

SMB deriva da SubMiniature B ed è il secondo disegno di subminiature. SMB è una versione più piccola dello SMA con l'aggancio a scatto. Fornisce la possibilità a banda larga attraverso 4 gigahertz con un connettore progettato a scatto.

I connettori MCX sono stati introdotti negli anni 80. Sebbene MCX abbia contatti ed isolanti di dimensioni interne identiche dell'SMB, il diametro esterno della spina è il 30% più piccolo dell'SMB. Questa serie fornisce ai progettisti opzioni con peso e spazio fisico limitati. MCX fornisce la possibilità a banda larga sebbene solo a 6 gigahertz con un connettore progettato a scatto.

Oltre che questi connettori standard, la maggior parte dei dispositivi WiFi usano una varietà di connettori proprietari. Spesso, questi sono semplicemente connettori standard a microonde con le parti centrali invertite, o con la filettatura tagliata in senso opposto. Queste parti sono integrate spesso in un sistema a microonda usando un ponticello corto denominato ponticello flessibile che converte il connettore non standard in qualcosa di più robusto e facilmente disponibile. Alcuni di questi connettori includono:

RP-TNC. Questo è un connettore TNC con i teminali maschio/femmina invertiti. Questi sono comunemente usati sull'apparecchiatura Linksys, come il WRT54G.

U.FL (anche conosciuto come MHF). L'U.FL è un connettore brevettato fatto da Hirose, mentre il l'MHF è un connettore meccanicamente equivalente. Questo è attualmente il più piccolo connettore a microonde maggiormente usato. U.FL/MHF è usato tipicamente per collegare una scheda radiofonica mini-PCI ad un'antenna o ad un connettore più grande (come N o TNC).

La serie MMCX, anche chiamata MicroMate, è una tra le più piccole linee di connettori RF ed è stata sviluppata negli anni 90. MMCX è una serie di connettori micro-miniaturizzata con un meccanismo di sicurezza a scatto permettendo la flessibilità di una rotazione di 360 gradi. I connettori MMCX sono comunemente usati sulle schede radiofoniche di PCMCIA, come quelli prodotte da Senao e da Cisco.

I connettori MC-Card sono ancora più piccoli e più fragili degli MMCX. Hanno un connettore esterno spaccato che si rompe facilmente dopo appena alcuni collegamenti. Questi sono comunemente usati sull'apparecchiatura di Lucent/Orinoco/Avaya.

Gli adattatori, che sono anche denominati adattatori coassiali, sono connettori corti, a due vie utilizzati per unire due cavi o componenti che non possono essere collegati direttamente. Gli adattatori possono essere utilizzati per collegare dispositivi o cavi di differenti tipi. Per esempio, un adattatore può essere utilizzato per collegare un connettore SMA ad uno BNC. Gli adattatori possono anche essere utilizzati per collegare connettori dello stesso tipo, ma che non possono essere uniti direttamente a causa del loro delle differenti terminazioni maschio/femmina. Per esempio un adattatore molto utile è quello che permette di unire due tipi di connettori N, con terminazione femminile da entrambi i lati.

http://wiki.wndw.net/images/figures/en/figure-4.3.png

Figura 4.3: Un adattatore avvolgifilo femminile di tipo N.

Scelta del connettore adeguato

  1. "La questione del genere." Virtualmente tutti i connettori hanno un genere ben definito consistente di un perno (l'estremità “maschio„) o di uno zoccolo (l'estremità “femminile„). I cavi hanno solitamente connettori maschili su entrambe le estremità, mentre i dispositivi RF (cioè trasmettitori ed antenne) hanno connettori femminili. I dispositivi come gli accoppiatori direzionali e i dispositivi di misurazione line-through possono avere sia connettori maschili che femminili. Occorre essere sicuri che ad ogni connettore maschile nel vostro sistema corrisponda un connettore femminile.
  2. "Minimizzare è la cosa migliore!" Provare a minimizzare il numero di connettori e di adattatori nella catena RF. Ogni connettore introduce una certa perdita supplementare (fino agli alcuni dB per ogni collegamento, secondo il connettore!)
  3. "Comprare, non costruire!" Come accennato precedentemente, voi avete bisogno per quanto possibile di cavi comprati che sono già completi di connettori. La saldatura dei connettori non è un'operazione facile e fare questo lavoro correttamente è quasi impossibile per i piccoli connettori come U.FL e MMCX. Neppure terminare i cavi "Foam" è un'operazione facile.
  4. Non usare BNC per 2.4GHz o più. Usare il tipo di connettori N (o SMA, SMB, TNC, ecc.)
  5. I connettori a microonde hanno parti fatte con alta precisione e possono essere danneggiati facilmente se maltrattati. Come regola generale, dovreste ruotare il manicotto esterno per stringere il connettore, lasciando il resto del connettore (e del cavo) stazionario. Se altre parti del connettore sono torte mentre si stringono o si allentano, si possono verificare facilmente dei danni.
  6. Non calpestare mai i connettori, o abbandonare i connettori sul pavimento quando si staccano i cavi (questo accade più spesso di quello che potete immaginare, particolarmente quando si lavora al supporto di un'antenna sopra un tetto).
  7. Non utilizzare mai attrezzi come pinze per stringere i connettori. Utilizzare sempre le vostre mani. Nel funzionare all'esterno, ricordarsi che i metalli si espandono alle temperature elevate e che si riducono alle temperature basse: un connettore molto stretto in estate può saldarsi o persino rompersi in inverno.

Antenne & diagrammi di radiazione

Le antenne sono un componente molto importante nei sistemi di comunicazione. Per definizione, un'antenna è un dispositivo utilizzato per trasformare un segnale RF che viaggia su un conduttore in un' onda elettromagnetica nello spazio libero. Le antenne dimostrano una proprietà conosciuta come reciprocità, che significa che un'antenna manterrà le stesse caratteristiche sia se si stia trasmettendo che ricevendo. La maggior parte delle antenne sono dispositivi risonanti, e funzionano efficientemente sopra una fascia di frequenza relativamente stretta. Un'antenna deve essere sintonizzata alla stessa fascia di frequenza del sistema radiofonico a cui è collegata, altrimenti la ricezione e la trasmissione saranno alterate. Quando un segnale si inserisce in un'antenna, l'antenna emette una radiazione distribuita nello spazio in una determinata direzione. Una rappresentazione grafica della relativa distribuzione della potenza irradiata nello spazio è denominata diagramma di radiazione.

Glossario dei termini dell'antenna

Prima di parlare di specifiche antenne, ci sono alcuni comuni termini che devono essere definiti e spiegati:

Impedenza dell'input

Per un trasferimento efficiente di energia, l' impedenza della radio, dell'antenna ed del cavo della trasmissione che li collega deve essere la stessa. I ricetrasmettitori e le loro linee di trasmissione sono progettati tipicamente per l'impedenza di 50Ω. Se l'antenna ha un'impedenza differente da 50Ω, allora vi è un disadattamento ed è richiesto un circuito di adattamento di impedenza. Quando qualcuno di questi componenti sono sottoposti a disadattamento, l'efficienza della trasmissione diminuisce.

Attenuazione di adattamento

Attenuazione di adattamento è un altro modo di esprimere il disadattamento. È un rapporto logaritmico misurato in dB che confronta la potenza riflessa dall'antenna con quella che è inserita nell'antenna dalla linea della trasmissione. La relazione fra SWR e attenuazione di adattamento è la seguente:

                                                 SWR
Attenuazione di adattamento (in dB) = 20log10  -------
                                               SWR - 1

Mentre una certa quantità di energia sarà sempre riflessa indietro nel sistema, un'alta attenuazione di adattamento renderà inaccettabili le prestazioni dell'antenna.

Larghezza di banda

La larghezza di banda di un'antenna si riferisce all'intervallo di frequenze sopra le quali l'antenna può funzionare correttamente. La larghezza di banda dell'antenna è il numero di hertz per cui l'antenna esibirà uno SWR minore di 2:1.

La larghezza di banda può anche essere descritta in termini di percentuale della frequenza centrale della banda.

                            FH = FL
Larghezza di banda = 100 x  -------
                              FC

…dove FH è la più alta frequenza della banda, FL è la frequenza più bassa della banda e FC è la frequenza centrale nella banda.

In questo modo, la larghezza di banda è costante relativamente alla frequenza. Se la larghezza di banda fosse espressa in unità assolute di frequenza, essa sarebbe differente a secondo della frequenza centrale. Differenti tipi di antenne hanno differenti limitazioni di larghezza di banda.

Direttività e guadagno

La direttività è la capacità di un'antenna di focalizzare l'energia in una particolare direzione quando trasmette, o di ricevere l'energia proveniente da una direzione particolare. Se un collegamento wireless usa posizioni fisse in entrambi i finali, è possibile usare la direttività dell'antenna per concentrare il fascio di radiazione nella direzione desiderata. In un'applicazione mobile dove il ricetrasmettitore non è fisso, può essere impossibile da prevedere dove il ricetrasmettitore sarà e così l'antenna dovrebbe irradiarsi idealmente nel miglior modo possibile in tutte le direzioni. Un'antenna omnidirezionale è utilizzata in queste applicazioni.

Il guadagno non è una quantità che possa essere definita in termini di quantità fisica come il watt o l'Ohm, ma è un rapporto senza dimensioni. Il guadagno è dato nel riferimento ad un'antenna standard. Le due antenne di riferimento più comuni sono l' antenna isotropica e l' antenna risonante a dipolo. L'antenna isotropica si irradia ugualmente bene in tutte le direzioni. Antenne isotropiche reali non esistono, ma forniscono modelli teorici utili e semplici con cui confrontare antenne reali. Ogni antenna reale irradierà più energia in alcune direzioni che in altre. Poiché le antenne non possono generare energia, la potenza totale irradiata è la stessa di un'antenna isotropica. Qualsiasi energia supplementare irradiata nella direzione favorita è compensata da uguale meno energia irradiata in tutte le altre direzioni.

Il guadagno di un'antenna in una data direzione è la quantità di energia irradiata in quella direzione confrontata con l'energia che un'antenna isotropica irradierebbe nella stessa direzione una volta portata alla stessa potenza di input. Siamo solitamente soltanto interessati al guadagno massimo, che è il guadagno nella direzione in cui l'antenna sta irradiando la maggior parte della potenza. Un guadagno dell'antenna di 3dB confrontato con un'antenna isotropica sarebbe scritto come 3dBi . L'antenna risonante a dipolo può essere un utile standard per il confronto con altre antenne ad una frequenza o sopra una banda molto stretta di frequenze. Confrontare il dipolo con un'antenna sopra un intervallo di frequenze richiede un certo numero di dipoli di lunghezze differenti. Un guadagno dell'antenna di 3dB confrontato con un'antenna a dipolo sarebbe scritto come 3dBd.

Il metodo di misurazione del guadagno confrontando l'antenna sotto test con un'antenna standard conosciuta, che ha un guadagno calibrato, è conosciuto tecnicamente come tecnica del trasferimento di guadagno. Un altro metodo per la misurazione del guadagno è il metodo delle 3 antenne, dove la potenza trasmessa e ricevuta ai terminali dell'antenna è misurata fra tre antenne arbitrarie ad una distanza fissa conosciuta.

Diagramma di radiazione

Il diagramma di radiazione o diagramma dell'antenna descrive la intensità relativa del campo irradiato nelle varie direzioni dall'antenna, ad una distanza costante. Il diagramma di radiazione è anche un diagramma di ricezione, poiché descrive inoltre le proprietà di ricezione dell'antenna. Il diagramma di radiazione è tridimensionale, ma solitamente i diagramma di radiazione misurati sono una fetta bidimensionale del diagramma tridimensionale, nei piani orizzontali o verticali. Queste misure del diagramma sono presentate in un formato rettangolare o polare. La seguente figura mostra una rappresentazione rettangolare del grafico di una tipica antenna Yagi a dieci elementi . Il dettaglio non è affidabile perché è difficile prevedere il comportamento dell'antenna nelle differenti direzioni.

http://wiki.wndw.net/images/figures/en/figure-4.4.png

Figura 4.4: Un grafico rettangolare di un diagramma di radiazione di un'antenna yagi.

I sistemi a coordinate polari sono usati quasi universalmente. Nel grafico a coordinate polari, i punti sono localizzati tramite proiezione lungo un asse di rotazione (raggio) ad un'intersezione con uno di parecchi cerchi concentrici. Ciò che segue è un diagramma polare della stessa antenna di Yagi a 10 elementi.

I sistemi a coordinate polari possono essere divisi generalmente in due classi: lineare e logaritmico. Nel sistema a coordinate lineari, i cerchi concentrici sono equidistanti e sono graduati. Una tale griglia può essere usata per preparare un grafico lineare della potenza contenuta nel segnale. Per facilità di confronto, i cerchi concentrici equidistanti possono essere sostituiti con cerchi disposti propriamente che rappresentano la risposta in decibel, corrispondente a 0 dB sul bordo esterno del grafico. In questo genere di grafici i lobi minori sono soppressi. I lobi con picchi di più di 15 dB o sotto il lobo principale spariscono a causa del loro piccola dimensione. Questa griglia aumenta i grafici in cui l'antenna ha un alta direttività e piccoli lobi minori. La tensione del segnale, piuttosto che la potenza, può anche essere tracciata su un sistema a coordinate lineare. In questo caso, anche, la direttività è aumentata ed i lobi minori sono soppressi, ma non nello stessa quantità come nella griglia di potenza lineare.

http://wiki.wndw.net/images/figures/en/figure-4.5.png

Figura 4.5: Un grafico lineare polare della stessa antenna yagi.

Nel sistema a coordinate polari logaritmiche le linee di griglia concentriche sono spaziate periodicamente secondo il logaritmo della tensione del segnale. I valori differenti possono essere usati per la costante logaritmica della periodicità e questa scelta avrà un effetto sull'apparenza dei diagrammi tracciati. Generalmente è usato il riferimento di 0 dB per il bordo esterno del gafico. Con questo tipo di griglia, i lobi che sono 30 o 40 dB sotto il lobo principale sono ancora distinguibili. La distanza fra i punti 0 e -3 dB è più grande della distanza fra -20 e -23 dB, che è più grande della distanza fra -50 e -53 dB. La distanza corrisponde così all'importanza relativa di tali cambiamenti nelle prestazioni dell'antenna.

Una scala logaritmica modificata aumenta la forma del fascio principale mentre comprime ad un livello molto basso (> dB 30) i lobi laterali verso il centro del diagramma.

http://wiki.wndw.net/images/figures/en/figure-4.6.png

Figura 4.6: Il grafico logaritmico polare

Ci sono due generi di diagrammi di radiazione: assoluto e relativo. I diagrammi di radiazione assoluti sono presentati in unità assolute d'intensità o di potenza del campo. I diagrammi di radiazione relativi si riferiscono nelle unità relative d'intensità o di potenza del campo. La maggior parte delle misure del diagrammi di radiazione riguardano l'antenna isotropica ed il metodo di trasferimento di guadagno allora è usato per stabilire il guadagno assoluto dell'antenna.

Il diagramma di radiazione nella regione vicino all'antenna non è la stessa del diagramma alle grandi distanze. Il termine near-field si riferisce al diagramma del campo che esiste vicino all'antenna, mentre termine far-field si riferisce al diagramma del campo alle grandi distanze. Il far-field inoltre è denominato radiation field, che è il più comunemente usato. In genere, è la potenza irradiata che più interessa e così i diagrammi dell'antenna sono misurati solitamente nella regione far-field. Per la misura del diagramma è importante scegliere una distanza sufficientemente grande da essere nel far-field, ben fuori dal near-field. La distanza ammissibile minima dipende dalle dimensioni dell'antenna rispetto alla lunghezza d'onda. La formula accettata per questa distanza è:

        2d^2
rmin = ------
         λ

dove rmin è la distanza minima dall'antenna, la d è la più grande dimensione dell'antenna e il λ è la lunghezza d'onda.

Larghezza di fascio

Usualmente per larghezza di fascio dell'antenna si intende la larghezza di fascio a metà potenza. Quando il picco dell'intensità di radiazione è conosciuto allora i punti da ciascun lato del picco che rappresenta la metà di potenza dell'intensità sono individuati. La distanza angolare fra i punti di metà potenza è definita come la larghezza di fascio. La metà di potenza espressa in decibel è -3dB, così la larghezza di fascio a metà potenza a volte si riferisce alla larghezza di fascio 3dB. Usualmente sono considerate sia le larghezze del fascio orizzontali che verticali.

Assumendo che la maggior parte di potenza irradiata non è divisa nei lobi laterali, il guadagno di direttività è inversamente proporzionale alla larghezza di fascio: mentre la larghezza di fascio diminuisce, il guadagno di direttività aumenta.

Lobi laterali

Non c'è nessun'antenna capace di irradiare tutta l'energia in una direzione desiderata. Un po' di energia è irradiata inevitabilmente in altre direzioni. Questi più piccoli picchi sono conosciuti come lobi laterali, misurati comunemente in dB più piccoli rispetto al lobo principale.

Nulls

In un diagramma di radiazione dell'antenna, un null è una posizione in cui la potenza del segnale irradiata efficace è ad un minimo. Una posizione di segnale minimo ha spesso un angolo di direttività più di quello del fascio principale. Quindi, la posizione di segnale minimo è utile per parecchi scopi, come la soppressione dei segnali interferenti in una data direzione.

Polarizzazione

La polarizzazione è definita come l'orientamento del campo elettrico di un'onda elettromagnetica. La polarizzazione generalmente è descritta da un ellisse. Due casi speciali di polarizzazione ellittica sono polarizzazione lineare e polarizzazione circolare. La polarizzazione iniziale di un'onda radio è determinata dall'antenna.

Con la polarizzazione lineare, il vettore del campo elettrico rimane nello stesso piano tutto il tempo. Il campo elettrico può lasciare l'antenna in un orientamento verticale, un orientamento orizzontale, o ad un certo angolo fra i due. La radiazione polarizzata verticalmente è influenzata piuttosto di meno dalle riflessioni sul percorso di trasmissione. Le antenne omnidirezionali hanno sempre una polarizzazione verticale. Con la polarizzazione orizzontale, tali riflessioni causano variazioni nell'intensità del segnale ricevuto. E' meno probabile che le antenne orizzontali risentano dell'interferenza industriale, che ordinariamente è polarizzata verticalmente.

http://wiki.wndw.net/images/figures/en/figure-4.7.png

Figura 4.7: L'onda sinusoidale elettrica si sposta perpendicolarmente all'onda magnetica nel verso della propagazione.

Nella polarizzazione circolare il vettore del campo elettrico ruota con movimento circolare nel verso della propagazione, facendo un giro completo per ogni ciclo RF. Questa rotazione può essere destrorsa o sinistrorsa. La scelta della polarizzazione è una delle scelte di progettazione disponibili al progettista del sistema RF.

Disadattamento di polarizzazione

Per trasferire la massima potenza del segnale fra un'antenna trasmittente e una ricevente, entrambe le antenne devono avere lo stesso orientamento spaziale, lo stesso verso di polarizzazione e lo stesso rapporto assiale.

Quando le antenne non sono allineate o non hanno la stessa polarizzazione, ci sarà una riduzione del trasferimento di potenza fra le due antenne. Questa riduzione del trasferimento di potenza diminuirà l'efficienza e le prestazioni del sistema totale.

Quando le antenne trasmittente e ricevente sono entrambe polarizzate linearmente, il disallineamento fisico delle antenne provocherà una perdita da disadattamento di polarizzazione, che può essere determinata usando la seguente formula:

Loss (dB) = 20 log (cos θ)

...dove θ è l'angolo della differenza di allineamento fra le due antenne. Per 15° la perdita è approssimativamente 0.3dB, per 30° si perdono 1.25dB, per 45° si perdono 3dB e per 90° si ha una perdita infinita.

In breve, più grande è il disadattamento nella polarizzazione fra un'antenna trasmittente e di ricezione, più grande è la perdita apparente. Nella realtà, un disadattamento di 90° nella polarizzazione è abbastanza grande ma non infinito. Alcune antenne, come le yagis o le antenne can, possono essere semplicemente ruotate di 90° per uguagliare la polarizzazione dall'altra parte del collegamento. Potete usare l'effetto di polarizzazione a vostro vantaggio su un collegamento punto-a-punto. Utilizzare uno strumento di monitoraggio per osservare l'interferenza tra le reti adiacenti e ruotare un'antenna fino a che non vedete il più basso segnale ricevuto. Allora collegatevi ed orientate l'altra parte in modo da eguagliare la polarizzazione. Questa tecnica può a volte essere usata per mantenere i collegamenti stabili, anche negli ambienti radiofonici rumorosi.

Rapporto fronte-retro

È spesso utile confrontare il rapporto fronte-retro delle antenne direzionali. Questo è il rapporto del massima direttività di un'antenna rispetto alla direttività nel verso opposto. Per esempio, quando il diagramma di radiazione è rappresentato con una una scala relativa di dB, il rapporto fronte-retro è la differenza in dB fra il livello della massima radiazione nel verso di andata ed il livello di radiazione a 180 gradi.

Questo numero è insignificante per un'antenna omnidirezionale, ma dà un'idea della quantità di potenza diretta in avanti su un'antenna assolutamente direzionale.

Tipi di Antenne

La classificazione delle antenne può essere basata su:

  • Frequenza e grandezza. Le antenne utilizzate per l'HF sono differenti dalle antenne utilizzate per il VHF, che a loro volta sono differenti dalle antenne per le microonde. La lunghezza d'onda è diversa a frequenze differenti, di modo che le antenne devono essere differenti nel formato per irradiare i segnali alla lunghezza d'onda corretta. In particolare noi siamo interessati in antenne che funzionano in un intervallo di microonde, specialmente alle frequenze di 2.4 GHz e di 5 GHz. A 2.4 GHz la lunghezza d'onda è 12.5cm, mentre a 5 GHz è 6cm.

  • Direttività. Le antenne possono essere omnidirezionali, settoriali o direttive. Le antenne omnidirezionali irradiano approssimativamente nello stesso modo interamente intorno all'antenna in un diagramma completo a 360°. I tipi più popolari di antenne omnidirezionali sono il dipolo e il piano di massa. Le antenne settoriali irradiano soprattutto in una zona specifica. Il fascio può essere largo fino a 180 gradi, o stretto fino a 60 gradi. Le direzionali o antenne direttive sono antenne in cui la larghezza di fascio è molto più stretta delle antenne settoriali. Hanno il più alto guadagno e quindi sono usate per i collegamenti interurbani. Tipi di antenne direttive sono la Yagi, la biquad, l'antenna a tromba, l'elicoidale, l'antenna patch, il disco parabolico e molte altre.

  • Costruzione fisica. Le antenne possono essere costruite in molti differenti modi, che variano dai semplici fili, ai dischi parabolici, ai barattoli di caffè.

When considering antennas suitable for 2.4 GHz WLAN use, another classification can be used:

  • Application. Access points tend to make point-to-multipoint networks, while remote links are point-to-point. Each of these suggest different types of antennas for their purpose. Nodes that are used for multipoint access will likely use omni antennas which radiate equally in all directions, or sectorial antennas which focus into a small area. In the point-to-point case, antennas are used to connect two single locations together. Directive antennas are the primary choice for this application.

Ora sarà presentata una breve lista di antenne di tipo comune per la frequenza dei 2.4 GHz, con una breve descrizione e con le informazioni di base sulle loro caratteristiche.

Piano di massa con lunghezza d'onda di 1/4

L'antenna a piano di massa con lunghezza d'onda di 1/4 è molto semplice da costruire ed è utile per le comunicazioni quando formato, costo e facilità di costruzione sono importanti. Questa antenna è progettata per trasmettere un segnale polarizzato verticalmente. Consiste di un elemento a dipolo a 1/4 d'onda e tre o quattro elementi a piano di massa con lunghezza d'onda di 1/4 piegati di 30 - 45 gradi in giù. Questo insieme degli elementi, denominati parti radiali, è conosciuto come piano di massa. Questa è un'antenna semplice ed efficace che può catturare ugualmente un segnale da tutti le direzioni. Per aumentare il guadagno, il segnale può essere appiattito concentrando il fuoco maggiormente all'orizzonte piuttosto che sopra o sotto di esso. La larghezza di fascio verticale rappresenta il grado di planarità del fuoco. Ciò è utile in una situazione Punto-Multipunto, se tutte le altre antenne sono anche alla stessa altezza. Il guadagno di questa antenna è dell'ordine di 2 – 4 dBi.

http://wiki.wndw.net/images/figures/en/figure-4.8.png

Figura 4.8: Antenna a piano di massa con lunghezza d'onda di 1/4.

Antenna Yagi

Una Yagi base consiste di un certo numbero di elementi diritti, della misura approssimativamente di mezza lunghezza d'onda. L'elemento portante o attivo di una Yagi è equivalente ad un center-fed, un'antenna a dipolo a semi onda. Parallelamente all'elemento portante e circa di 0.2 - 0.5 lunghezze d'onda da qualsiasi lato di esso, vi sono delle barre o fili diritti denominati riflettori e direttori, o semplicemente elementi passivi. Un riflettore è disposto dietro l'elemento portante ed è un po' più lungo della metà della lunghezza d'onda; un direttore è disposto davanti l'elemento guidato ed è un po' più corto della metà della lunghezza d'onda. Una Yagi tipica ha un riflettore ed uno o più direttori. L'antenna propaga l'energia del campo elettromagnetico nella direzione che parte dall'elemento portante e si dirige verso i direttori ed è più sensibile all'energia entrante del campo elettromagnetico nella stessa direzione. Più direttori ha un Yagi, più grande è il guadagno. Più direttori sono aggiunti ad una Yagi essa, più essa diventa lunga. Segue la foto di un'antenna Yagi con 6 direttori ed un riflettore.

http://wiki.wndw.net/images/figures/en/figure-4.9.png

Figura 4.9: Un'antenna Yagi.

Le antenne Yagi sono utilizzate soprattutto per i collegamenti del Punto-a-Punto, hanno un guadagno da 10 a dBi 20 e ad una larhgezza del fascio orizzontale da 10 a 20 gradi.

Antenna a tromba

L'antenna a tromba deve il suo nome alla caratteristica apparenza svasata. La parte svasata può essere quadrata, rettangolare, cilindrica o conica. La direzione di massima radiazione corrisponde all'asse della tromba. È alimentata facilmente con una guida di onde, ma può essere alimentata con un cavo coassiale e una transizione adeguata. Le antenne a tromba sono comunemente usate come elemento attivo di un'antenna a disco. La tromba è puntata verso il centro del riflettore del disco. L'uso di una tromba al punto focale del disco, piuttosto che di un'antenna a dipolo o a qualunque altro tipo di antenna, minimizza la perdita di energia intorno ai bordi del riflettore del disco. A 2.4 Ghz, una semplice antenna a tromba fatta con un barattolo di latta ha un guadagno dell'ordine del 10 – 15 dBi .

http://wiki.wndw.net/images/figures/en/figure-4.10.png

Figura 4.10: Tromba di alimentazione fatta con un barattolo di cibo.

Disco parabolico

Le antenne basate sui riflettori parabolici sono il tipo più comune di antenne direttive quando è richiesto un alto guadagno. Il vantaggio principale è che possono essere fatte per avere guadagno e direttività grandi quanto si vuole. Lo svantaggio principale è che i dischi grandi sono difficili da montare ed è probabile avere un grande spostamento d'aria.

I dischi fino ad un metro sono fatti solitamente da materiale solido. L'alluminio è usato frequentemente per il vantaggio del suo peso, la sua durata e le buone caratteristiche elettriche. Lo spostamento d'aria aumenta velocemente con la grandezza del disco e presto si trasformerà in un problema serio. I dischi che hanno una superficie riflettente che usa una maglia aperta sono usati frequentemente. Questi hanno un rapporto fronte-retro più povero , ma sono più sicuri da usare e più facile costruire. Il rame, l'alluminio, l'ottone, l'acciaio galvanizzato ed il ferro sono materiali adatti alla maglia.

http://wiki.wndw.net/images/figures/en/figure-4.11.png

Figure 4.11: Un'antenna con un disco solido.

BiQuad

L'antenna BiQuad è semplice da costruire ed offre buoni direttività e guadagno per le comunicazioni Punto-a-Punto. Consiste di due quadrati dello stesso formato di 1/4 di lunghezza d'onda come elemento di irradiamento e di una piastra o griglia metallica come riflettore. Questa antenna ha una larghezza di fascio di circa 70 gradi e un guadagno dell'ordine di 10-12 dBi. Può essere usata come antenna autonoma o come alimentatore di un disco parabolico. La polarizzazione è tale che guardando l'antenna dalla parte davanti, se i quadrati sono disposti fianco a fianco la polarizzazione è verticale.

http://wiki.wndw.net/images/figures/en/figure-4.12.png

Figura 4.12: Il BiQuad.

Altre antenne

Esistono molti altri tipi di antenne ed i nuovi sono stati creati con l'avanzamento nella tecnologia.

  • Settore o Antenne settoriali: sono ampiamente usati nell'infrastruttura cellulare di telefonia e solitamente sono costruiti aggiungendo una piastra riflettente a uno o più dipoli con la propria fase. La loro larghezza di fascio orizzontale può essere grande quanto 180 gradi, o stretta quanto 60 gradi, mentre il verticale è solitamente molto più stretto. Le antenne composite possono essere costruite con molti Settori per coprire una gamma orizzontale più larga (antenna multisettoriale).
  • Antenne patch a o a pannello: sono pannelli piani solidi usati per utilizzo al chiuso, con un guadagno fino a 20 dB.

Teoria del riflettore

La proprietà di base di un riflettore parabolico perfetto è quella che converte un'onda sferica che si irradia da un punto sorgente corrispondente al fuoco in un'onda piana. Di contro, tutta l'energia ricevuta dal disco da una sorgente distante è riflessa in un unico punto nel fuoco del disco. La posizione del fuoco, o lunghezza focale, è data da:

      D^2
f = -------
    16 × c

...dove D è il diametro del disco e c è la profondità della parabola al suo centro.

La grandezza del disco è il fattore più importante poiché determina il guadagno massimo che può essere realizzato alla data frequenza ed alla larghezza di fascio risultante. Il guadagno e la larghezza di fascio ottenuti sono dati da:

           (π × D)^2
Guadagno = --------- × n
              λ^2

                      70 λ
Larghezza di fascio = ----
                       D

…dove D è il diametro del disco e n è l'efficienza. L'efficienza è determinata principalmente dall'efficacia di illuminazione del disco dall'alimentazione, ma anche da altri fattori. Ogni volta che il diametro di un disco è raddoppiato, il guadagno è più grande di quattro volte, o di 6 dB. Se entrambe le stazioni raddoppiano la grandezza dei loro dischi, l'intensità del segnale può essere aumentata di 12 dB, un guadagno molto notevole. Un'efficienza del 50% può essere raggiunta con un'antenna costruita a mano.

Il rapporto f / D (lunghezza focale/diametro del disco) è il fattore fondamentale che governa il progetto dell'alimentazione di un disco. Il rapporto è direttamente collegato alla larghezza di fascio dell'alimentazione necessaria per illuminare efficacemente il piatto. Due piatti dello stesso diametro ma con lunghezze focali differenti richiedono un progetto differente di alimentazione se entrambi devono essere illuminati efficientemente. Il valore di 0.25 corrisponde al comune piano focale del disco in cui il fuoco è sullo stesso piano del bordo del disco.

Amplificatori

Come menzionato precedentemente, le antenne attualmente non generano realmente potenza. Esse semplicemente dirigono tutta la potenza disponibile in un particolare percorso. Usando un amplificatore di potenza, potete usare la corrente continua per aumentare il segnale disponibile. Un amplificatore si connette fra la radiotrasmittente e l'antenna ed ha un cavo supplementare che si collega ad una sorgente di energia. Sono disponibili amplificatori che lavorano a 2.4GHz, e possono aggiungere parecchi Watt di potenza alla vostra trasmissione. Questi dispositivi sentono quando una radio collegata sta trasmettendo e rapidamente potenziano ed amplificano il segnale. Poi si spengono di nuovo quando la trasmissione si conclude. Mentre ricevere, inoltre aggiungono l'amplificazione al segnale prima di spedirla alla radio.

Purtroppo, aggiungere semplicemente gli amplificatori non risolverà magicamente tutti i vostri problemi della rete. Non parleremo a lungo degli amplificatori di potenza in questo libro perché ci sono un certo numero di svantaggi significativi usandoli:

  • Sono costosi. Gli amplificatori devono funzionare alle larghezze di banda abbastanza grandi a 2.4GHz e devono commutare abbastanza rapidamente per funzionare con applicazioni Wi-Fi. Questi amplificatori esistono, ma tendono a costare diverse centinaia dollari l'uno.

  • Ne avrete bisogno almeno di due. Considerando che le antenne forniscono il guadagno reciproco che avvantaggia entrambi i lati di un collegamento, gli amplificatori lavorano al meglio amplificando un segnale trasmesso. Se aggiungete soltanto un amplificatore alla fine di un collegamento con guadagno insufficiente dell'antenna, probabilmente potrà essere sentito dalla sua parte ma non dall'altra estremità.

  • Non forniscono direttività supplementare. Aggiungendo guadagno dell'antenna si ottengono sia benefici di direttività che di guadagno ad entrambe le estremità del collegamento. Non solo la quantità disponibile di segnale migliora, ma c'e' la tendenza a rifiutare il rumore proveniente da altre direzioni. Gli amplificatori amplificano ciecamente sia segnali voluti che interferenti e possono aumentare i problemi di interferenza.

  • Gli amplificatori generano rumore per altri utenti della banda. Aumentando la vostra potenza in uscita, state generando una sorgente più forte di rumore per altri utenti della banda non autorizzati. Ciò non può avere molta importanza oggi nelle zone rurali, ma può causare grandi problemi nelle zone popolate. Di contro, aumentare guadagno dell'antenna migliorerà il vostro collegamento e può realmente far diminuire il rumore per i vostri vicini.

  • Usare amplificatori probabilmente non è legale. Ogni paese impone limiti di potenza per l'uso di spettri non autorizzati. Aggiungere un'antenna ad un segnale altamente amplificato probabilmente indurrà il collegamento ad eccedere i limiti legali.

L'uso degli amplificatori è spesso confrontato al vicino sconsiderato che desiderasse ascoltare la radio stando fuori della sua casa e la mettesse a tutto volume. Egli potrebbe "migliorare" la ricezione orientando i suoi altoparlanti fuori della finestra. Ora come egli può sentire la radio, anche tutti gli altri nel quartiere la potrebbero sentire. Questo metodo può funzionare esattamente con un utente, ma che cosa accadrebbe se i vicini decidessero la stessa cosa con le loro radio? L'uso di amplificatori per un collegamento wireless causa approssimativamente lo stesso effetto a 2.4GHz. Il vostro collegamento può "lavorare meglio" momentaneamente, ma avrete problemi quando altri utenti della banda decidessero di utilizzare i propri amplificatori.

Usando un guadagno delle antenne più alto piuttosto che gli amplificatori, eviterete tutti questi problemi. Le antenne costano molto meno degli amplificatori e si può migliorare semplicemente un collegamento cambiando l'antenna su un'estremità. L'uso di radio più sensibili ed un cavo di buona qualità inoltre aiuta significativamente nelle grandi distanze. E' improbabile che queste tecniche possano causare problemi per altri utenti della banda perciò suggeriamo di perseguirle molto di più che aggiungere amplificatori.

Pratici progetti di antenna

l costo delle antenne di 2.4GHz è sceso significativamente con l'introduzione di 802.11b. I progetti innovatori usano parti più semplici e pochi materiali per realizzare un guadagno impressionante con relativamente poco lavoro. Purtroppo, la disponibilità di buone antenne ancora è limitata ad alcune zone del mondo ed importarle può essere costoso in maniera proibitiva. Mentre realmente progettare un'antenna può essere un processo complesso e soggetto ad errori, costruire antenne con componenti disponibili in loco è molto semplice e può essere molto divertente. Presentiamo quattro progetti pratici di antenna che possono essere sviluppati con pochissimi soldi.

USB dongle as dish feed

Possibly the simplest antenna design is the use of a parabola to direct the output of a USB wireless device (known in networking circles as a USB dongle). By placing the internal dipole antenna present in USB wireless dongles at the apex of a parabolic dish, you can provide significant gain without the need to solder or even open the wireless device itself. Many kinds of parabolic dishes will work, including satellite dishes, television antennas, and even metal cookware (such as a wok, round lid, or strainer). As a bonus, inexpensive and lossless USB cable is then used to feed the antenna, eliminating the need for expensive coaxial cable or heliax.

To build a USB dongle parabolic, you will need to find the orientation and location of the dipole inside the dongle. Most devices orient the dipole to be parallel with the short edge of the dongle, but some will mount the dipole perpendicular to the short edge. You can either open the dongle and look for yourself, or simply try the dongle in both positions to see which provides more gain.

To test the antenna, point it at an access point several meters away, and connect the USB dongle to a laptop. Using the laptop's client driver or a tool such as Netstumbler (see chapter six), observe the received signal strength of the access point. Now, slowly move the dongle in relation to the parabolic while watching the signal strength meter. You should see a significant improvement in gain (20 dB or more) when you find the proper position. The dipole itself is typically placed 3 to 5 centimeters from the back of the dish, but this will vary depending on the shape of the parabola. Try various positions while watching your signal strength meter until you find the optimum location.

Once the best location is found, securely fix the dongle in place. You will need to waterproof the dongle and cable if the antenna is used outdoors. Use a silicone compound or a piece of PVC tubing to seal the electronics against the weather. Many USB-fed parabolic designs and ideas are documented online at http://www.usbwifi.orcon.net.nz/ .

Collinear omni

This antenna is very simple to build, requiring just a piece of wire, an N socket and a square metallic plate. It can be used for indoor or outdoor Point-to-MultiPoint short distance coverage. The plate has a hole drilled in the middle to accommodate an N type chassis socket that is screwed into place. The wire is soldered to the center pin of the N socket and has coils to separate the active phased elements. Two versions of the antenna are possible: one with two phased elements and two coils and another with four phased elements and four coils. For the short antenna the gain will be around 5dBi, while the long one with four elements will have 7 to 9 dBi of gain. We are going to describe how to build the long antenna only.

http://wiki.wndw.net/images/figures/en/figure-4.13.png

Figure 4.13: The completed colinear omni

Parts list

  • One screw-on N-type female connector
  • 50 cm of copper or brass wire of 2 mm of diameter
  • 10x10 cm or greater square metallic plate

http://wiki.wndw.net/images/figures/en/figure-4.14.png

Figure 4.14: 10 cm x 10 cm aluminum plate.

Tools required

  • Ruler
  • Pliers
  • File
  • Soldering iron and solder
  • Drill with a set of bits for metal (including a 1.5 cm diameter bit)
  • A piece of pipe or a drill bit with a diameter of 1 cm
  • Vice or clamp
  • Hammer
  • Spanner or monkey wrench

Construction

  1. Straighten the wire using the vice.

    http://wiki.wndw.net/images/figures/en/figure-4.15.png

    Figure 4.15: Make the wire as straight as you can.

  2. With a marker, draw a line at 2.5 cm starting from one end of the wire. On this line, bend the wire at 90 degrees with the help of the vice and of the hammer.

    http://wiki.wndw.net/images/figures/en/figure-4.16.png

    Figure 4.16: Gently tap the wire to make a sharp bend.

  3. Draw another line at a distance of 3.6 cm from the bend. Using the vice and the hammer, bend once again the wire over this second line at 90 degrees, in the opposite direction to the first bend but in the same plane. The wire should look like a 'Z'.

    http://wiki.wndw.net/images/figures/en/figure-4.17.png

    Figure 4.17: Bend the wire into a "Z" shape.

  4. We will now twist the 'Z' portion of the wire to make a coil with a diameter of 1 cm. To do this, we will use the pipe or the drill bit and curve the wire around it, with the help of the vice and of the pliers.

    http://wiki.wndw.net/images/figures/en/figure-4.18.png

    Figure 4.18: Bend the wire around the drill bit to make a coil.

    The coil will look like this:
  5. You should make a second coil at a distance of 7.8 cm from the first one. Both coils should have the same turning direction and should be placed on the same side of the wire. Make a third and a fourth coil following the same procedure, at the same distance of 7.8 cm one from each other. Trim the last phased element at a distance of 8.0 cm from the fourth coil.

    http://wiki.wndw.net/images/figures/en/figure-4.20.png

    Figure 4.20: Try to keep it as straight possible.

    If the coils have been made correctly, it should now be possible to insert a pipe through all the coils as shown.

    http://wiki.wndw.net/images/figures/en/figure-4.21.png

    Figure 4.21: Inserting a pipe can help to straighten the wire.

  6. With a marker and a ruler, draw the diagonals on the metallic plate, finding its center. With a small diameter drill bit, make a pilot hole at the center of the plate. Increase the diameter of the hole using bits with an increasing diameter.

    http://wiki.wndw.net/images/figures/en/figure-4.22.png

    Figure 4.22: Drilling the hole in the metal plate.

    The hole should fit the N connector exactly. Use a file if needed.

    http://wiki.wndw.net/images/figures/en/figure-4.23.png

    Figure 4.23: The N connector should fit snugly in the hole.

  7. To have an antenna impedance of 50 Ohms, it is important that the visible surface of the internal insulator of the connector (the white area around the central pin) is at the same level as the surface of the plate. For this reason, cut 0.5 cm of copper pipe with an external diameter of 2 cm, and place it between the connector and the plate.

    http://wiki.wndw.net/images/figures/en/figure-4.24.png

    Figure 4.24: Adding a copper pipe spacer helps to match the impedance of the antenna to 50 Ohms.

  8. Screw the nut to the connector to fix it firmly on the plate using the spanner.

    http://wiki.wndw.net/images/figures/en/figure-4.25.png

    Figure 4.25: Secure the N connector tightly to the plate.

  9. Smooth with the file the side of the wire which is 2.5 cm long, from the first coil. Tin the wire for around 0.5 cm at the smoothed end helping yourself with the vice.

    http://wiki.wndw.net/images/figures/en/figure-4.26.png

    Figure 4.26: Add a little solder to the end of the wire to "tin" it prior to soldering.

  10. With the soldering iron, tin the central pin of the connector. Keeping the wire vertical with the pliers, solder its tinned side in the hole of the central pin. The first coil should be at 3.0 cm from the plate.

    http://wiki.wndw.net/images/figures/en/figure-4.27.png

    Figure 4.27: The first coil should start 3.0 cm from the surface of the plate.

  11. We are now going to stretch the coils extending the total vertical length of the wire. Using the use the vice and the pliers, you should pull the cable so that the final length of the coil is of 2.0 cm.

    http://wiki.wndw.net/images/figures/en/figure-4.28.png

    Figure 4.28: Stretching the coils. Be very gentle and try not to scrape the surface of the wire with the pliers.

  12. Repeat the same procedure for the other three coils, stretching their length to 2.0 cm.

    http://wiki.wndw.net/images/figures/en/figure-4.29.png

    Figure 4.29: Repeat the stretching procedure for all of the remaining coils.

  13. At the end the antenna should measure 42.5 cm from the plate to the top.

    http://wiki.wndw.net/images/figures/en/figure-4.30.png

    Figure 4.30: The finished antenna should be 42.5 cm from the plate to the end of the wire.

  14. If you have a Spectrum Analyzer with Tracking Generator and a Directional Coupler, you can check the curve of the reflected power of the antenna. The picture below shows the display of the Spectrum Analyzer.

    http://wiki.wndw.net/images/figures/en/figure-4.31.png

    Figure 4.31: A spectrum plot of the reflected power of the collinear omni.

    If you intend to use this antenna outside, you will need to weatherproof it. The simplest method is to enclose the whole thing in a large piece of PVC pipe closed with caps. Cut a hole at the bottom for the transmission line, and seal the antenna shut with silicone or PVC glue.

Cantenna

This antenna, sometimes called a Cantenna, uses a tin can as a waveguide and a short wire soldered on an N connector as a probe for coaxial-cable-to-waveguide transition. It can be easily built at just the price of the connector, recycling a food, juice, or other tin can. It is a directional antenna, useful for short to medium distance point-to-point links. It may be also used as a feeder for a parabolic dish or grid.

Not all cans are good for building an antenna because there are dimensional constraints:

http://wiki.wndw.net/images/figures/en/figure-4.32.png

Figure 4.32: Dimensional constraints on the cantenna

  1. The acceptable values for the diameter D of the feed are between 0.60 and 0.75 wavelength in air at the design frequency. At 2.44 GHz the wavelength λ is 12.2 cm, so the can diameter should be in the range of 7.3 - 9.2 cm.
  2. The length L of the can preferably should be at least 0.75 λG, where λG is the guide wavelength and is given by:
                   λ
     λG = ------------------------
          sqrt(1 - (λ / 1.706D)^2)
    For D = 7.3 cm, we need a can of at least 56.4 cm, while for D = 9.2 cm we need a can of at least 14.8 cm. Generally the smaller the diameter, the longer the can should be. For our example, we will use oil cans that have a diameter of 8.3 cm and a height of about 21 cm.
  3. The probe for coaxial cable to waveguide transition should be positioned at a distance S from the bottom of the can, given by:
    •     S = 0.25 λG
      Its length should be 0.25 λ, which at 2.44 GHz corresponds to 3.05 cm. The gain for this antenna will be in the order of 10 to 14 dBi, with a beamwidth of around 60 degrees.

      http://wiki.wndw.net/images/figures/en/figure-4.33.png

      Figure 4.33: The finished cantenna.

Parts list

  • one screw-on N-type female connector
  • 4 cm of copper or brass wire of 2 mm of diameter
  • an oil can of 8.3 cm of diameter and 21 cm of height

http://wiki.wndw.net/images/figures/en/figure-4.34.png

Figure 4.34: Parts needed for the can antenna.

Tools required

  • Can opener
  • Ruler
  • Pliers
  • File
  • Soldering iron
  • Solder
  • Drill with a set of bits for metal (with a 1.5 cm diameter bit)
  • Vice or clamp
  • Spanner or monkey wrench
  • Hammer
  • Punch

Construction

  1. With the can opener, remove carefully the upper part of the can.

    http://wiki.wndw.net/images/figures/en/figure-4.35.png

    Figure 4.35: Be careful of sharp edges when opening the can.

    The circular disk has a very sharp edge. Be careful in handling it! Empty the can and wash it with soap. If the can contained pineapple, cookies, or some other tasty treat, have a friend serve the food.
  2. With the ruler, measure 6.2 cm from the bottom of the can and draw a point. Be careful to measure from the inner side of the bottom. Use a punch (or a small drill bit or a Phillips screwdriver) and a hammer to mark the point. This makes it easier to precisely drill the hole. Be careful not to change the shape of the can doing this by inserting a small block of wood or other object in the can before tapping it.

    http://wiki.wndw.net/images/figures/en/figure-4.36.png

    Figure 4.36: Mark the hole before drilling.

  3. With a small diameter drill bit, make a hole at the center of the plate. Increase the diameter of the hole using bits with an increasing diameter. The hole should fit exactly the N connector. Use the file to smooth the border of the hole and to remove the painting around it in order to ensure a better electrical contact with the connector.

    http://wiki.wndw.net/images/figures/en/figure-4.37.png

    Figure 4.37: Carefully drill a pilot hole, then use a larger bit to finish the job.

  4. Smooth with the file one end of the wire. Tin the wire for around 0.5 cm at the same end helping yourself with the vice.

    http://wiki.wndw.net/images/figures/en/figure-4.38.png

    Figure 4.38: Tin the end of the wire before soldering.

  5. With the soldering iron, tin the central pin of the connector. Keeping the wire vertical with the pliers, solder its tinned side in the hole of the central pin.

    http://wiki.wndw.net/images/figures/en/figure-4.39.png

    Figure 4.39: Solder the wire to the gold cup on the N connector.

  6. Insert a washer and gently screw the nut onto the connector. Trim the wire at 3.05 cm measured from the bottom part of the nut.

    http://wiki.wndw.net/images/figures/en/figure-4.40.png

    Figure 4.40: The length of the wire is critical.

  7. Unscrew the nut from the connector, leaving the washer in place. Insert the connector into the hole of the can. Screw the nut on the connector from inside the can.

    http://wiki.wndw.net/images/figures/en/figure-4.41.png

    Figure 4.41: Assemble the antenna.

  8. Use the pliers or the monkey wrench to screw firmly the nut on the connector. You are done!

    http://wiki.wndw.net/images/figures/en/figure-4.42.png

    Figure 4.42: Your finished cantenna.

As with the other antenna designs, you should make a weatherproof enclosure for the antenna if you wish to use it outdoors. PVC works well for the can antenna. Insert the entire can in a large PVC tube, and seal the ends with caps and glue. You will need to drill a hole in the side of the tube to accommodate the N connector on the side of the can.

Cantenna as dish feed

As with the USB dongle parabolic, you can use the cantenna design as a feeder for significantly higher gain. Mount the can on the parabolic with the opening of the can pointed at the center of the dish. Use the technique described in the USB dongle antenna example (watching signal strength changes over time) to find the optimum location of the can for the dish you are using.

By using a well-built cantenna with a properly tuned parabolic, you can achieve an overall antenna gain of 30dBi or more. As the size of the parabolic increases, so does the potential gain and directivity of the antenna. With very large parabolas, you can achieve significantly higher gain.

For example, in 2005, a team of college students successfully established a link from Nevada to Utah in the USA. The link crossed a distance of over 200 kilometers! The wireless enthusiasts used a 3.5 meter satellite dish to establish an 802.11b link that ran at 11Mbps, without using an amplifier. Details about this achievement can be found at http://www.wifi-shootout.com/

NEC2

NEC2 stands for Numerical Electromagnetics Code (version 2) and is a free antenna modeling package. NEC2 lets you build an antenna model in 3D, and then analyzes the antenna's electromagnetic response. It was developed more than ten years ago and has been compiled to run on many different computer systems. NEC2 is particularly effective for analyzing wire-grid models, but also has some surface patch modeling capability.

The antenna design is described in a text file, and then the model is built using this text description. An antenna described in NEC2 is given in two parts: its structure and a sequence of controls. The structure is simply a numerical description of where the different parts of the antenna are located, and how the wires are connected up. The controls tell NEC where the RF source is connected. Once these are defined, the transmitting antenna is then modeled. Because of the reciprocity theorem the transmitting gain pattern is the same as the receiving one, so modeling the transmission characteristics is sufficient to understand the antenna's behaviour completely.

A frequency or range of frequencies of the RF signal must be specified. The next important element is the character of the ground. The conductivity of the earth varies from place to place, but in many cases it plays a vital role in determining the antenna gain pattern.

To run NEC2 on Linux, install the NEC2 package from the URL below. To launch it, type nec2 and enter the input and output filenames. It is also worth installing the xnecview package for structure verification and radiation pattern plotting. If all went well you should have a file containing the output. This can be broken up into various sections, but for a quick idea of what it represents a gain pattern can be plotted using xnecview. You should see the expected pattern, horizontally omnidirectional, with a peak at the optimum angle of takeoff. Windows and Mac versions are also available.

The advantage of NEC2 is that we can get an idea of how the antenna works before building it, and how we can modify the design in order to get the maximum gain. It is a complex tool and requires some research to learn how to use it effectively, but it is an invaluable tool for antenna designers.

NEC2 is available from Ray Anderson's "Unofficial NEC Archives" at http://www.si-list.org/swindex2.html

Online documentation can be obtained from the "Unofficial NEC Home Page" at http://www.nittany-scientific.com/nec/ .